

Billings Logan
International Airport
Billings, Montana

2012 Storm Drain Master Plan

March 2012

PREPARED BY: MORRISON
MAIERLE, INC.
ENGINEERS • SURVEYORS • PLANNERS • SCIENTISTS

TABLE OF CONTENTS

2012 STORM DRAIN MASTER PLAN BILLINGS LOGAN INTERNATIONAL AIRPORT BILLINGS, MONTANA

1.0	PURPOSE.....	4
2.0	SUMMARY.....	4
3.0	EXISTING STORMWATER SYSTEM.....	5
3.1	DRAINAGE SYSTEM 1	5
3.2	DRAINAGE SYSTEM 2	6
3.3	DRAINAGE SYSTEM 3	6
3.4	OFF-SITE DRAINAGES.....	7
4.0	MODELING.....	8
4.1	STORMWATER MODELING.....	8
4.2	PRECIPITATION DATA	9
4.3	DESIGN CRITERIA	9
5.0	STORM DRAINAGE ANALYSIS RESULTS	11
5.1	DRAINAGE SYSTEM 1	11
5.2	DRAINAGE SYSTEM 2	13
5.3	DRAINAGE SYSTEM 3	14
5.4	OFF-SITE DRAINAGES.....	14
6.0	RECOMMENDED IMPROVEMENTS	17
6.1	IMMEDIATE IMPROVEMENTS	17
6.1.1	Improve Ponds A, B, and C.....	17
6.1.2	Adopt a Stormwater Maintenance Plan	18
6.1.3	Define Drainage Routes	18
6.1.4	Pond E Improvements – Phase 1	19
6.1.5	Permitting for Pond D Outfall Route.....	19
6.2	CIP IMPROVEMENTS	19
6.2.1	Bore Runway Pipe Crossing	20
6.2.2	Enlarge On-Site Detention.....	20
6.2.3	Install Standpipe at Area K Highway 3 Crossing.....	20
6.2.4	Pond D Improvements	20
6.2.5	Redirect Stormwater into Pond D.....	21
6.2.6	Glycol Treatment Improvements	21
6.3	FUTURE IMPROVEMENTS	21
6.3.1	Pond E Improvements – Phase 2	21
6.3.2	Install Additional Pipe into Pond E	22
6.3.3	Slow Peak Discharge Rate for Area J Outfall.....	22
6.4	OFFSITE IMPROVEMENTS	22
6.5	FUTURE DEVELOPMENT	22

LIST OF TABLES

Table 1. Rainfall Depths	9
Table 2. Design Criteria	10
Table 3. Summary for Ponds A, B, and C	12
Table 4. Summary for Pond D	13
Table 5. Summary for Pond E	14
Table 6. Reduction in Drainage Area Size Contributing to the Alkali Area	15
Table 7. Portion of Current Drainage Areas on Airport Property	16
Table 8. Summary for Ponds A, B, and C with 2 ft Weir Extensions	17

APPENDICES

Appendix A – Storm Drainage System Site Plans

Exhibit 1 – Overall Drainage System Site Plan

Exhibit 2 – Drainage System 1 & 2 Site Plan

Exhibit 3 – Drainage System 3 Site Plan

Exhibit 4 – Current Offsite Drainage Site Plan

Exhibit 5 – 1957 Offsite Drainage Site Plan

Appendix B – Record Drawings - Selected Plan Sheets

A.D.A.P.-07: Selected Sheets for Ponds A, B, C, D (1977)

AIP 3-30-0008-07: Selected Sheets for Pond E (1988)

Appendix C – Precipitation Data

Table 3.4, Intensity-Duration for Billings, Montana, City of Billings Stormwater Management Manual

June 20, 2010 Storm Data

May 24, 2011 Storm Data

Appendix D – HydroCAD Routing Diagram

Appendix E – HydroCAD Summary – 5-year, 24-hour Storm

Appendix F – HydroCAD Summary – 100-year, 24-hour Storm

Appendix G – HydroCAD Summary – Ponds A, B, C, D, and E

Appendix H – Stormwater Pipe Capacity Tables

Appendix I – Recommended Improvements

Exhibit 6 – Recommended Improvements Site Plan

Exhibit 7 – Pond “C” Outfall Route Options

Exhibit 8 – Pond “D” Outfall Route Options

Exhibit 9 – Pond “E” Outfall Route Options

Appendix J – Cost Estimates for Recommended Improvements

Appendix K – Scope of Work

1.0 PURPOSE

The purpose of this Storm Drain Master Plan (SDMP) is to analyze the current drainage system at the Billings Logan International Airport and determine what improvements can be made. This study will provide on-site recommendations for storm water conveyance and detention.

2.0 SUMMARY

The first storm drainage system master plan for Billings Logan International Airport was completed in 1975. An update to the original master plan was completed in 1989 and again in 1996.

The 1975 Storm Drainage Master Plan prepared by Hurlbut, Kersich & McCullough addressed two alternate routes (Sun Valley Route and Moon Valley Route) for a storm drain outfall main from the airport property to Alkali Creek. The Moon Valley Route intercepted less surface drainage, however was determined to have a steeper outfall resulting in a smaller diameter pipe and thus a lower cost. This report also discussed the installation of a trunk main along the north side of Runway 10L/28R (old Runway 9L/27R). This report also recommended to construct an open ditch northerly into the coulee northwesterly of Runway 10L/28R. At this time the design criteria used for storm drain pipe was a five-year storm in accordance with FAA AC 150/5320-5B (1970). The design analysis for this report was based off the Rational Method. Rainfall intensities were taken from the MMI Storm Drain Improvement (1962).

In 1976 Ponds A, B, and C were constructed along with Pond D.

The 1989 Storm Drain Master Plan prepared by HKM Associates incorporated numerous changes including the construction of Runway 7/25, extension of Runway 10L/28R (old 9L/27R), the construction of Runway 10R/28L (old 9R/27L), regrading of the west end of the airport, and the purchase of additional property. This master plan also used a 5-year design storm to evaluate the storm drain pipe network in accordance with FAA AC 150/5320-5B (1970). This report states that based on correspondence with the FAA it was agreed that storage facilities would be evaluated using a 25-year storm. The other major purpose of this report was to utilize improved methods of storm drainage analysis that became available at this time. The design analysis was now able to utilize the U.S. Environmental Protection Agency Storm Water Management Model (SWMM) version PCSWMM 3rd ed., 1986. Rainfall amounts were obtained from the City of Billings Stormwater Management Manual (1986). This report concluded that detention ponds A, B, and C were oversized at that time. It noted the pipes that did not have adequate capacity and discussed the advantages this has to the downstream pipes and pond networks. This report proposed a new detention Pond E.

In 1988 Pond E was constructed.

The 1996 Storm Drainage System Master Plan Update prepared by Morrison Maierle, Inc. was a supplement and update to the 1989 drainage plan. Changes that were incorporated in this report include the west end T-hangar site, the west concrete parking apron, the terminal building expansion and parking, the east end commercial hangar area, and the projected future expansion of airport facilities. This report also used the 5-year design frequency to analyze the storm drainage pipes in accordance with FAA AC150/5320-5B. In accordance with the previous master

plans, this report used a 25-year storm to analyze the storm detention ponds. Like the previous report, the design analysis used the U.S. Environmental Protection Agency Storm Water Management Model (SWMM) version PCSWMM 3rd ed., 1986. Rainfall amounts were also obtained from the City of Billings Stormwater Management Manual (1986).

On June 20, 2010 and May 24, 2011 ponds A, B, and C overflowed the concrete overflow weir at dike C. There have been no other reported storm events that have overflowed Pond C since their construction in 1976. Temporary 2 feet weir extensions were placed by the airport on ponds A, B, and C in order to increase the storage should another large storm occur.

This report will incorporate major changes since the 1996 SDMP including Taxiway J Construction, Cargo Apron Slots 1, 2, 3 Construction, Service Road Construction, Taxiway D Construction, Taxiway A straightening, Concrete Gate B-4 and added slotted drain, the Rental Car Quick Turn Around Site, Taxiway G relocation, and the MDT Airport Road project. This report will summarize the existing stormwater system at the airport, explain the modeling process used, and give the storm drainage analysis results along with recommended improvements.

3.0 EXISTING STORMWATER SYSTEM

The airport is situated on top of the Rimrocks, located within the City of Billings. The northern boundary of the airport includes steep sandstone cliffs and multiple natural drainages into the Alkali area. The southern boundary of the airport is along Montana Highway 3 that borders a steep sandstone cliff. See Exhibit 1 for the Overall Drainage System Site Plan. The following summarizes the four independent drainage systems at Billings Logan International Airport.

3.1 DRAINAGE SYSTEM 1

Drainage System 1 is the southeasterly side of the airport and includes detention Ponds A, B, and C and the pipe network that drains into these ponds. The airfield areas east of decommissioned runway 16/34 flow into the three ponds via the airport's pipe network and eventually discharge into Alkali Creek. This drainage system includes the Airport Terminal area and parking lots, Aircraft Rescue and Fire Fighting Facility, cargo ramps, General Aviation East Aprons, and runway and taxiways east of Taxiway "G". See Exhibit 2 for Drainage System 1 Site Plan.

Ponds A, B, and C were constructed in 1976. The 24 inch discharge pipe from the ponds to Alkali Creek was also constructed at this time. Design plans for the ponds and discharge pipe were prepared by Hurlbut, Kersich and McCullough. The ponds were designed to have 2.5:1 side slopes with a bentonite soil mix lining on inside/upstream faces. The 9 foot high earth dikes were designed with a keyed-in base. The concrete structures at dikes A and B have a 9 inch high x 12 inch wide opening located at the pond bottom elevation. The concrete overflow weirs (25 ft x 25 ft x 25 ft) were designed to be 6 feet higher than the bottom of the ponds with an additional 3.5 foot freeboard to the top of the wall. The concrete structure at dike C was designed to have a 24 inch RCP outflow with a concrete overflow weir located 3.25 feet above the top of the concrete slab with an additional 3.5 foot freeboard to the top of wall. The 24 inch x 2582 linear foot RCP discharge pipe drops 185 feet of elevation and was designed to have the last 851 feet enlarged to a 36 inch RCP, constructed with two (2) 56 foot segments of Energy Dissipator Rings before entering Alkali Creek. See Appendix B for selected as-built sheets from A.D.A.P. 07 for the design of Ponds A, B, and C.

According to the 1989 Storm Drain Master Plan for BLIA, based on correspondence with the FAA it was agreed that storage facilities would be evaluated using a 25-year storm. According to the 1996 Storm Drainage System Master Plan for BLIA the three ponds are capable of detaining the 25 year occurrence storm. Ponds A, B, and C overflowed on June 20, 2010 and May 24, 2011 during two major storm events estimated to be approximate 100-year storms. This overflow added to the downstream flooding along the Alkali Creek Area.

The storm conveyance piping systems at the airport have been previously analyzed using the 5-year design frequency in accordance with FAA AC 150/5320-5B. There are multiple pipes that are over capacity for the 5-year flow, however it has been noted in the 1996 SDMP that the ponding created by these undersized pipes is considered acceptable and that the majority of these pipes should not be enlarged in order to preserve the additional detention capacity provided by on site ponding. There are some areas on the airfield that did experience damage during these major storms due to the undersized pipes. However, until the ponds are enlarged the ponding due to the surcharged pipes is considered acceptable to the airport at this time.

3.2 DRAINAGE SYSTEM 2

Currently, Drainage System 2 includes detention Pond D and the area along decommissioned runway 4/22 that contributes to this pond. Design plans for Pond D were prepared by Hurlbut, Kersich and McCullough (see Appendix B for selected as-built sheets from A.D.A.P. 07). Pond D was designed to discharge through a 10 inch ductile pipe located at the floor of the pond. This discharge then surface flows down an existing natural ravine into Sun Valley Road. The overflow for the pond was designed with a 60 inch drop inlet (no grate) located 5 feet above the floor of the pond discharging to a 48 inch spillway. See Appendix B for selected as-built sheets from A.D.A.P. 07 for the design of Pond D.

According to the 1989 Storm Drain Master Plan for BLIA, based on correspondence with the FAA it was agreed that storage facilities would be evaluated using a 25-year storm. A 24 inch RCP originally discharged into this pond, but the pipe network was diverted in 1988 when runway 4/22 was decommissioned and the pavement surface was removed and reseeded to grass pasture. Pond D currently detains a small amount of surface runoff from the grass pasture areas. According to the 1996 Storm Drainage System Master Plan for BLIA, Drainage System 2 is substantially underutilized. There has been no reported storm events that have overflowed this pond system. The airport received complaints concerning water damage from residents who live on Sun Valley Road during the June 20, 2010 storm and the May 24, 2011 storm due to surface runoff. Almost all of the surface runoff contributing to Sun Valley Road is from unimproved grassed areas that naturally slope towards this subdivision.

3.3 DRAINAGE SYSTEM 3

Drainage System 3 is the area west of decommissioned runway 16/34 that drains into detention Pond E. This drainage system includes runway 10R/28L, the western half of runway 7/25, the western end of runway 10L/28R, the west end T-hangar site, the Rental Car Quick Turn Around Facility, and the grassed surfaces between these improved areas.

Design plans for Pond E were prepared by HKM Associates in 1988. The ponds were designed to have 2.5:1 side slopes with a membrane liner on inside/upstream faces. The concrete overflow weirs (25 ft x 25 ft x 25 ft) are 7 feet higher than the bottom of the ponds with an additional 3.5 foot

freeboard to the top of the wall. Pond E discharges through a 24 inch RCP located at the bottom of the pond with a 36 inch segment at the outlet and continues as surface flow down an existing natural ravine into an area of Alkali that is presently undeveloped. See Appendix B for selected "as-built" sheets from AIP 07 for the design of Pond E.

According to the 1996 SDMP, Pond E was designed to detain a 25-year occurrence storm and was capable of handling the existing flows at that time. There has been no reported storm events that have overflowed this pond system. The outfall of this discharge pipe does experience minor erosion during the larger storm events due to both surface runoff channeled to this outfall and the outfall from the pipe itself.

3.4 OFF-SITE DRAINAGES

The following are the areas of Airport property that are not intercepted by the existing pond systems and drain off-site. See Exhibit 4 for the Offsite Drainage Site Plan.

Areas A and B are located at the eastern end of the airport property. This area of land surface flows down into two natural ravines through property owned by the Billings Saddle Club that is mostly undeveloped. No projected airport improvements are planned for this area.

Area C includes subdivisions along Tumbleweed Drive and Pinon Drive. Some of the overflow from Pond C during the June 20, 2010 and May 24, 2011 storms cascaded down a natural ravine across two developed lots, then into Tumbleweed Drive where it discharged through a curb inlet. There are segments of dedicated drainage easements shown on the subdivision plats for Tumbleweed Drive and Pinon Drive, however the drainage easement does not extend through the two developed lots where the overflow runs. There is not a continuous drainage route from the airport property to Alkali Creek through this subdivision.

Area D includes subdivisions along Moon Valley Road and Moon Beam Lane. This area also includes the Business Park Complex off of Rimtop Drive. The majority of the overflow from Pond C during the June 20, 2010 and May 24, 2011 storms cascaded down the rims across one developed lot, then into Moon Valley Road where it is joined with surface runoff as it continued down the dedicated street right of way to Moon Beam Lane crossing through multiple developed lots to Alkali Creek Road.

Area E includes subdivisions along Sun Valley Road, Evergreen Drive, and Pine Tree Drive. Area F includes subdivisions along Prickly Pear Drive, Sage Drive, Foothill Drive, Woodland Trail and Valley Heights Road. These subdivisions have had a history of stormwater issues that have repeatedly resulted in property damage.

The Valley Heights Road Extension and Sun Valley Road – RSID 691 Drainage Investigation Report prepared by Morrison Maierle in 2004 states that the Sun Valley Road drainage system consists of various sized driveway culverts and conveyance pipes on private properties on the eastern side of the road. At that time the culverts mostly ranged from 15 inch CMP to 24 inch CMP. In addition, the larger culverts were located upstream and got smaller as you move further down the basin. This report summarized the pipe capacities noting that the actual capacities were a fraction of the needed capacities for even a 2-year, 24-hour storm. The report estimates that for a 2-year, 24-hour storm the pipes should be at least 36 inch RCP and for a 10-year, 24-hour storm the pipes should be at least 48 inch RCP. Also, in 2003 Engineering Inc. designed RSID 691 that would provide storm drain improvements and street paving. A decision was made to proceed with

the project paving and not address the undersized storm system at that time. Any culverts that have not been enlarged will continue to see the washout problems that this subdivision often experiences.

The Valley Heights Road Extension and Sun Valley Road – RSID 691 Drainage Investigation Report prepared by Morrison Maierle in 2004 states that the lower portion of Valley Heights Road does not have a drainage system and that all runoff travels uncontrolled down the road until it reaches Alkali Creek Road. The upper portion does have a designed drainage system designed by KLJ, including two retention ponds that reportedly has adequate storage for the 2-year, 24-hour event.

Areas G and H are undeveloped areas northeast of decommissioned runway 16/34. All stormwater runoff is via surface flow down natural ground until it reaches Alkali Creek. These areas have a potential for subdivision and subsequent improvements, therefore it is very important to be instrumental in identifying needed drainage ways for both Yellowstone County and the City of Billings to ensure that the drainage routes are not lost to development.

Area I is west of the Runway 10L end. This area includes a short pipe network segment that discharges into a natural ravine and surface flows down to Alkali Creek. It also includes the discharge from Pond E.

Area J is a large, mostly undeveloped area at the northwest end of the airport property that was the old Logan Ranch property and includes the burn pit.

Areas K, M, N, and O are all areas on the west end of the airport property that drain to a culvert crossing under Highway 3 and discharge south over the Rims.

Area L is an area on the west end of the airport property that drains to a natural retention pond.

4.0 MODELING

4.1 STORMWATER MODELING

HydroCAD-10 was used to model the airport's storm drain system. The SCS Unit Hydrograph Method (SCS TR-20), with a Type II distribution was used. The pre-development subcatchment areas (before the airport was built) were delineated and modeled in HydroCAD using 20-ft contours based on the following Billings East USGS Quad Maps (1956, Photorevised in 1969 and 1975).

The post-development or current subcatchment areas were delineated and modeled using 2-ft contours stereodigitized by MMI/CSSA in 1995. Aerial photography was used to estimate the amount of impervious areas outside the airport survey mapping. Previous data collected for the Billings Logan storm drainage system did not include elevation data since the SWMM software did not require it. Since the HydroCAD Stormwater Modeling software requires elevation data, this data was collected for all ponds, pipes, and channels in the model. Elevation data was taken from previous as-built plans adjusting older projects from the old NGVD29 datum to the current NAVD 88 datum (2.56 ft higher). Elevation data that could not be found on as-built plans was obtained through pick-up survey. Ponds A, B, C, D, and E were modeled using surveyed elevations.

4.2 PRECIPITATION DATA

The precipitation data for this SDMP was taken from the City of Billings Stormwater Management Manual (SWMM) dated February 2011. Table 3.4 of the SWMM, Intensity-duration for Billings, Montana, is attached in Appendix C. The storms modeled for this report are listed in Table 1 below.

Table 1. Rainfall Depths

Storm Frequency and Duration	Depth (inches)
2-year, 24-hour	1.44
5-year, 24-hour	1.90
10-year, 24-hour	2.20
25-year, 24-hour	2.70
50-year, 24-hour	3.03
100-year, 24-hour	3.38

Ponds A, B, and C overflowed the concrete overflow weir at dike C on June 20, 2010 and May 24, 2011. See Appendix C for the storm data related to these storms. According to the National Weather Service, the June 20, 2010 storm resulted in 2.24 inches of rainfall between the readings of 4:06 pm and 5:53 pm (span of 1 hour, 47 minutes). This rainstorm was characterized with high intensity rainfall, large hail, and a tornado that touched down on Main Street in the Billings Heights. According to Table 3-4 of the Billings SWMM (also in Appendix C), the 100-year, 2-hour storm for Billings has an intensity of 0.91 inches per hour (1.82 inches total). The May 24, 2011 Storm resulted in 3.32 inches of rainfall between the readings of 5:53 am on May 24 and 5:53 am on May 25 (span of 24 hours). The 100-year, 24-hour storm for Billings has an intensity of 3.38 inches per hour. In addition, the soil conditions were wetter than normal during the May storm which would have contributed to less infiltration and more runoff.

4.3 DESIGN CRITERIA

Billings Logan International Airport is a separate and isolated entity that is not specifically addressed in the local standards. However, in order to determine a design event, the local standards were addressed.

The Federal Aviation Administration (FAA) Advisory Circular, AC 150/5320-5C, dated 9/29/2006 states that for detention facilities “An auxiliary outlet must be provided to allow overflow that may result from excessive inflow or clogging of the main outlet. This outlet should be positioned such that overflows will follow a predetermined route.” [8-3.1.2] This AC’s guidance on a design event for detention facilities states that is must be consistent with applicable local requirements and notes that a more common recent criteria is to design a detention facility using multiple storm frequencies. According to the 1996 SDMP, the storm conveyance piping systems were analyzed with a 5-year frequency design storm in accordance with FAA 150/5320-5B. The current AC (150/5320-5C) states, “For airports, it is recommended that the 5-yr storm event be used with no encroachment of runoff on taxiway and runway pavements (including paved shoulders). The damage or inconvenience that may be caused by storms greater than the 5-yr event may not warrant the increased cost of a drainage system large enough to accommodate that storm.” Section 2-2.5 of AC 150/5320-5C states, “The center 50 percent of runways; the center 50 percent of taxiways serving these runways; and helipad surfaces along the centerline should be free from ponding resulting from storms of a 10-yr frequency and intensity determined by the geographic

location."

Circular DEQ 8, Montana Standard for Subdivision Storm Drainage, 2002 Edition states that "Detention ponds shall be sized for a 2-year event, but must also be analyzed for a 100-year event, to ensure that no home sites or drainfields are inundated during this event. If this analysis shows that the capacity of the pond will not hold the entire event, the analysis must include a description of where the excess water will go, and what the potential downstream damages may be. In this case, the analysis must also compare the pre-development situation with the proposed development situation." It also states, "For detention ponds, the design event should have a duration at least equal to twice the time of concentration, but never shorter than one hour."

The Stormwater Management Manual for Billings, Montana dated February 2011 states that Comprehensive Drainage Plan (CDP) Sites "will be required to size their on-site storm drain facilities based upon the 50-year, 24-hour storm and the assumption of no discharge to the City's storm drain system." And it states, "All subdivisions must evaluate the 100-year, 24-hour storm and ensure stormwater does not runoff subdivision at a rate greater than the natural conditions prior to subdividing land." And "Under no circumstances shall runoff generated from a commercial or industrial site leave that site and drain to a neighboring property." However, the airport is not categorized as a subdivision or a commercial or industrial site as mentioned in the above guidelines. Billings Logan International Airport is considered to be a separate entity and although the airport is located within city limits, the City of Billings did not include the airport in the Stormwater Management Manual. Our analysis will size the detention ponds for the more stringent design criteria using the 100-year, 24-hour storm.

The design criteria detailed above is summarized in Table 2 below.

Table 2. Design Criteria

Storm Event	Design Standard
2-Year	DEQ 8: Subdivisions – Detention Pond Sizing
5-Year	AC 150/5320-5C – Pipe Sizing w/ no TW/RW encroachment
10-Year	AC 150/5320-5C – Pipe Sizing w/ 50% TW/RW encroachment
25-Year	Previous SDMP Design Criteria – Detention Pond Sizing
50-Year	SWMM: Billings CDP Sites – On-Site Storm Drain Facility Sizing
100-Year	SWMM: Billings Subdivisions – Stormwater Runoff Evaluation DEQ 8: Subdivisions - Detention Pond Analysis

In summary, the ponds will be evaluated using the 100-year, 24-hour storm. This analysis will also include descriptions of the pond outfall routes for any excess water should a larger storm occur. Additional analysis was also completed for the 2-year, 5-year, 10-year, 25-year, and 50-year, 24-hour storms to address the above requirements. The stormwater pipe network will be analyzed using a 5-year, 24-hour storm and the 100-year, 24-hour storm.

5.0 STORM DRAINAGE ANALYSIS RESULTS

The subcatchments were modeled with one of the following SCS/NRCS (Soil Conservation Service/Natural Resources Conservation Service) curve numbers. A curve number of 70 was used for the unpaved areas and represent a soil group designation of "C", a description of "brush, brush/weed/grass mix", and of "fair" condition. A curve number of 98 was used for all impervious areas including the paved parking lots, runways, taxiways, roadways, and building roofs.

The pipes were modeled as either a reinforced concrete pipe with a Manning's "n" value of 0.012 or a corrugated metal pipe with a Manning's "n" value of 0.025. An entrance loss coefficient was applied to each inlet to indicate the degree of energy loss at the entrance. An entrance loss coefficient of 0.01 was used for all entrances within a pipe network representing a very smooth, efficient entrance. An entrance loss coefficient of 0.80 was used for all drop inlets representing a more turbulent, restricting entrance. For a pipe that has an entrance of both a drop inlet and also a connecting pipe, an entrance loss coefficient of 0.5 was used. For a RCP culvert with an end-section conforming to fill an entrance loss coefficient of 0.5 was used. The invert and rim elevations of each pipe was gathered from available as-built drawings and pick-up survey where needed. The elevation data, along with length, slope, and size was then entered into HydroCAD.

HydroCAD does not calculate the capacity of the pipes. Rather, HydroCAD routes the stormwater through the pipe and gives a warning message when the water elevation is higher than the defined flood elevation thus indicating when water spills out the manhole. Therefore, a spreadsheet calculating pipe capacity is included in Appendix H. Pipe capacity is calculated based on Manning's Equation. All pipes are assumed at 100% capacity, with an unsubmerged inlet and outlet. The HydroCAD model does not include all pipes within the airport storm drain system. For a full view of all airport pipes see Appendix A.

5.1 DRAINAGE SYSTEM 1

The subcatchments and pipes within Drainage System 1 flow into detention Ponds A, B, and C. Ponds A, B, and C outfall into Alkali Creek through a 24 inch RCP. The airport's pipe network includes many undersized pipes. These undersized pipes restrict the flow in the ponds and create more on-site detention areas. In some areas, the surcharged pipes created enough pressure to overflow and push the lids off the manholes. This creates surface stormwater to flow to areas of natural ponding. The ponding in these areas is considered acceptable and beneficial to the operation of the pond system. Once the peak is routed through these pipes, the natural ponding areas drain through the pipe network and into the ponds. The model was created to estimate these major areas of on-site storage. See Appendix D for the HydroCAD Routing Diagram.

The results for Ponds A, B, and C are also shown in Appendix G. These ponds have an inflow area of 336 acres that is approximately 53% impervious. See Table 3 below for a summary of Ponds A, B, and C for a 100-year, 24-hour storm. For this storm the model estimates that Ponds A, B, and C are capable of storing 12.0 acre-feet, 9.7 acre-feet, and 7.9 acre-feet (at peak elevation), respectively for a total of 29.5 acre-feet. The static volume of ponds A, B, and C (based on survey) to the top of the concrete overflow weir is 9.4 acre-feet, 8.4 acre-feet, and 6.9 acre-feet, respectively for a total of 24.7 acre-feet. HydroCAD estimates the amount of actual storage obtained for the storm being modeled taking into account the head, or depth of water, going over the weir. The model estimates that for a 100-year, 24-hour storm that the peak flow at Pond C will overflow 5 inches above the concrete weir at a rate of 58 cfs for a total volume of 6.1 acre-feet.

Table 3. Summary for Ponds A, B, and C

	100-year, 24-hour storm						
	Pond A		Pond B		Pond C		Total
	Peak (cfs)	Volume (AF)	Peak (cfs)	Volume (AF)	Peak (cfs)	Volume (AF)	Volume (AF)
Static Volume (top of weir)		9.4		8.4		6.9	24.7
Inflow	292	54.3	248	54.3	174	54.2	
Primary Outflow (9"x12" Orifice for A/B or 24" outfall pipe for C)	9	20.2	9	27.2	35	48.0	
Secondary Outflow (concrete overflow weirs)	238	34.0	165	27.0	58	6.1	
Storage at Peak Elevation		12.0		9.7		7.9	29.5
Peak Elevation	13" above weir		11" above weir		5" above weir		

For a complete summary of results for Drainage System 1 see Appendices E through G. The HydroCAD output for the 5-year, 24-hour storm is included in Appendix E and the 100-year, 24 hour storm is included in Appendix F. Appendix G includes the HydroCAD output for the Ponds and includes the 2-year, 5-year, 10-year, 25-year, 50-year, and 100-year, 24-hour storms.

The two storms that caused Ponds A, B, and C to overflow were also analyzed in HydroCAD. The June 20, 2010 storm was estimated to be a 100-year, 2-hour storm. However, the closest approximation in HydroCAD for a Type II distributed storm is the 100-year, 6-hour storm. On that day, airport staff witnessed stormwater overflowing Pond C with an approximate depth of 4 inches over an approximate time span of 30 minutes. According to these observations, it is estimated that approximately 2 acre-feet of stormwater overflowed Pond C that day. HydroCAD estimates that a 100-year, 6-hour storm does not overflow the weir at Pond C. The overflow was most likely due to the very high intensity rainfall along with debris that washed downstream covering inlet grates and thus reducing the capacity of the overall stormdrain system.

The May 24, 2011 storm was approximated to be a 100-year, 24-hour storm. In addition, the ground conditions were wetter than usual. The storm was approximated in HydroCAD with the 100-year, 24-hour storm, but with an Antecedent Moisture Content (AMC) of 3 reflecting wet conditions instead of 2 for normal conditions. The AMC specifies the moisture level in the ground immediately prior to the storm. The airport had installed a 2 foot weir extension on Pond A prior to this storm in order to detain a larger volume of stormwater. On that day, airport staff witnessed stormwater overflowing Pond C with an approximate depth of 3 inches over an approximate time span of 3 hours. According to these observations, it is estimated that approximately 7 acre-feet of stormwater overflowed Pond C that day. For a 100-year, 24-hour storm with an AMC of 3 and a 2ft weir extension on A, HydroCAD estimates Pond C to overflow 15 acre-feet. For a 100-year, 24-hour storm with an AMC of 2 and a 2 feet weir extension on A, HydroCAD estimates Pond C to overflow 3 acre-feet. The moisture in the ground was most likely somewhere between an AMC of 2 and 3.

5.2 DRAINAGE SYSTEM 2

Pond D currently detains only a small amount of surface runoff. Pond D has an inflow area of only 23 acres and is 4% impervious. See Table 4 below for a summary of Pond D for a 100-year, 24-hour storm.

Table 4. Summary for Pond D

100-year, 24-hour storm		
	Pond D	
	Peak (cfs)	Volume (AF)
Static Volume (top of Drop Inlet)		1.2
Inflow	22	1.9
Primary Outflow (10" ductile iron)	3	1.9
Secondary Outflow (60" Drop Inlet)		
Storage at Peak Elevation		0.7
Peak Elevation	16" below inlet	

For a 100-year, 24-hour storm the model estimates that Pond D stores 0.7 acre-feet at the peak elevation. The peak elevation for the 100-year, 24-hour storm is 16 inches below the elevation of the top of the drop inlet, thus does not enter the overflow pipe. The static volume of Pond D to the top of the drop inlet is 1.2 acre-feet.

This drainage system is currently under-utilized and can accommodate future growth. In addition, this pond is located in an area that could be enlarged to accommodate even more runoff.

For a complete summary of results for Drainage System 2 see Appendices E through G. The HydroCAD output for the 5-year, 24-hour storm is included in Appendix E and the 100-year, 24-hour storm is included in Appendix F. Appendix G includes the HydroCAD output for Pond D and includes the 2-year, 5-year, 10-year, 25-year, 50-year, and 100-year, 24-hour storms.

5.3 DRAINAGE SYSTEM 3

Pond E has an inflow area of 255 acres and is 25% impervious. See Table 5 below for a summary of Pond E for a 100-year, 24-hour storm.

Table 5. Summary for Pond E

100-year, 24-hour storm		
	Pond E	
	Peak (cfs)	Volume (AF)
Static Volume (top of weir)		12.2
Inflow	198	29.1
Primary Outflow (24" RCP)	42	29.1
Secondary Outflow (concrete overflow weir)	0	0
Storage at Peak Elevation		12.0
Peak Elevation	1" below weir	

For this storm the model estimates that Pond E is very close to spilling over the concrete overflow weir. Based on survey, Pond E has a static volume of 12.2 acre-feet to the top of the concrete weir. The model estimates that the pond is storing 12.0 acre-feet of stormwater at the peak elevation for a 100-year, 24-hour storm.

For a complete summary of results for Drainage System 3 see Appendices E through G. The HydroCAD output for the 5-year, 24-hour storm is included in Appendix E and the 100-year, 24 hour storm is included in Appendix F. Appendix G includes the HydroCAD output for Pond E and includes the 2-year, 5-year, 10-year, 25-year, 50-year, and 100-year, 24-hour storms.

5.4 OFF-SITE DRAINAGES

Exhibit 4 shows the current Areas A through O of Airport property that are not intercepted by an existing pond system.

Areas A through J drain off-site into the Alkali Creek area via natural ravines as they did prior to the airport's development. Exhibit 5 shows these same areas using 1957 contours prior to the airport's development. Before the airport was built, the pond systems described above did not exist and the entire drainage area from Airport Road surface flowed into Alkali Creek. Exhibit 5 shows the volume of stormwater along with the peak flow that is generated at the lowest point of each subcatchment prior to the airport development.

As the airport developed more areas were intercepted with inlets and conveyed through the expanding pipe network and eventually discharged to Ponds A, B, C, D, or E where the stormwater is detained and then discharged at a slower rate. A comparison of the drainage area sizes for each ravine is listed in Table 6 below.

Table 6. Reduction in Drainage Area Size Contributing to the Alkali Area

Drainage Area	Area Description	1957 Drainage Area Size	Current Drainage Area Size	Difference in Drainage Area Size	
		(Acres)	(Acres)	(Acres)	%
Area A	Saddle Club East	51	49	-2	-4%
Area B	Saddle Club West	67	67	0	0%
Area C	Tumbleweed	116	92	-24	-21%
Area D	Moon Valley	317	192	-125	-39%
Area E	Sun Valley	257	207	-50	-19%
Area F	Prickly Pear	357	208	-149	-42%
Area G	Taxiway "G"	463	247	-216	-47%
Area H	Decom. RW 16/34 east	179	101	-78	-44%
Area I	Runway 10L end	446	467	21	5%
Area J	Old Ranch Area	1544	1543	-1	0%
Area K	Rim discharge	74	74	0	0%
Area L	Natural Retention Pond	97	97	0	0%
Area M	Rim discharge	25	25	0	0%
Area N	Rim discharge	0	5	5	N/A
Area O	Rim discharge	0	5	5	N/A

Many of drainage areas that contribute to the downstream subdivisions have decreased in size over the years due to the development of the airport stormwater system.

Areas K through O are located on the western end of the airport property. This area generally slopes towards Highway 3 both before the airport was developed and currently.

Area K slopes towards a 24 inch CMP that crosses under Highway 3 and discharges over the Rims. The drainage area that contributes to this culvert is approximately 74 acres. HydroCAD estimates a runoff volume of approximately 6 acre-feet during a 100-year, 24-hour storm with a peak discharge rate of 25 cfs directed towards the 24 inch CMP.

Area L slopes towards a natural retention pond. This pond is estimated to have a storage volume of 10 acre-feet. HydroCAD estimates the drainage area that contributes to this pond to have a runoff volume of 8 acre-feet for a 100-year, 24-hour storm. This pond stores the storm runoff effectively for the 100-year, 24-hour storm and is currently in an undeveloped area approximately 1500 feet from the end of Runway 10R/28L. There have been no reports of waterfowl in this area. This area should be monitored for waterfowl during periods of frequent rainfall.

Area M slopes towards a 24 inch CMP that crosses under Highway 3. The drop inlet on this pipe is located 9.75 feet higher than the invert of the pipe and approximately 5 feet higher than the ground and has slits cut in the standpipe to allow for slow inflow into this crossing culvert. The drainage area slopes towards this low spot and is detained and slowly released through the slits until the peak elevation reaches the top of the standpipe and then flows into the open 24 inch standpipe.

Thus the 24 inch CMP does not flow full except during major storms. HydroCAD estimates this area to have a runoff volume of 3 acre-feet during a 100-year, 24-hour storm.

Area N slopes towards a 24 inch CMP crossing under Highway 3 and a 18 inch CMP that crosses under an airport approach and continues to Area O. This drainage area that contributes to this pipe is only 5 acres and HydroCAD estimates a runoff volume of 0.4 acre-feet for a 100-year, 24-hour storm.

Area O located south of the newly constructed Rental Car Wash Facility slopes towards two culverts. One culvert is a 24 inch CMP that crosses under Highway 3 and discharges over the Rims. The other is a 24 inch RCP that crosses under an airport approach and discharges into the northern road ditch. This drainage area that contributes to this pipe is only 5 acres and HydroCAD estimates a runoff volume of 0.4 acre-feet for a 100-year, 24-hour storm.

The following table shows the portion of the current off-site drainage areas that are on airport property. For Areas C-F, the portion of land that is not on airport property consists mostly of developed Alkali Creek subdivisions.

Table 7. Portion of Current Drainage Areas on Airport Property

Drainage Area	Area Description	Current Drainage Area (Acres)	Portion of Current Drainage Areas <u>on</u> Airport Property	
			(Acres)	(%)
Area A	Saddle Club East	49	8	16%
Area B	Saddle Club West	67	35	52%
Area C	Tumbleweed	92	24	26%
Area D	Moon Valley	192	95	49%
Area E	Sun Valley	207	124	60%
Area F	Prickly Pear	208	87	42%
Area G	Taxiway "G"	247	62	25%
Area H	Decom. RW 16/34 east	101	11	11%
Area I	Runway 10L end	467	235	50%
Area J	Old Ranch Area	1543	442	29%
Area K	Rim discharge	74	4	5%
Area L	Natural Retention Pond	97	7	7%
Area M	Rim discharge	25	22	88%
Area N	Rim discharge	5	5	100%
Area O	Rim discharge	5	4	80%

Since the airport first began construction, there has been many improvements both on airport property and off airport property that has created more impermeable surfaces. Taxiways, runways, buildings, along with subdivisions, streets, homes, and driveways all result in more surfaces that do not allow water to penetrate into the soil causing a higher rate of surface runoff. The change in drainage area size in addition to the addition of impermeable surfaces were estimated in the HydroCAD model. The resulting peak flow that is generated at the lowest point of the

subcatchment is listed on Exhibit 4 – Current Offsite Drainage Site Plan. The peak flow is contributed by area that is both on and off airport property.

6.0 RECOMMENDED IMPROVEMENTS

The Master Plan prepared by Mead & Hunt dated March 2010 gives a brief summary of the existing stormwater system, providing recommendations for improvements. This report also describes the planned future development for the airport. The Master Plan detailing the planned future development, along with conversation with the airport about the past reported problems were evaluated in conjunction with the HydroCAD model results summarized above in order to develop a list of recommended improvements. Exhibit 6 – Recommended Improvements Site Plan under Appendix I summarizes the recommended improvements along with any major planned future development that would impact the storm drain system. Appendix J includes estimated cost estimates for the proposed improvements. These improvements are summarized below.

6.1 IMMEDIATE IMPROVEMENTS

The following recommended improvements are those determined to be the highest priority. It is recommended that the following improvements be planned as soon as possible.

6.1.1 Improve Ponds A, B, and C

It is recommended to increase the storage of Ponds A, B, and C in order to detain a 100-year, 24-hour storm. It is also recommended to design storage facilities with additional detention capacity if possible as a precaution for future rare but major storm events greater than the 100-year, 24-hour storm. The HydroCAD model estimates that if the overflow weirs and earth berms on Ponds A, B, and C were all raised two feet that the ponds could detain a 100-year, 24-hour storm. See Table 8 below. A minimum freeboard of two feet should be maintained.

Table 8. Summary for Ponds A, B, and C with 2 ft Weir Extensions

	100-year, 24-hour storm						
	Pond A		Pond B		Pond C		Total
	Peak (cfs)	Volume (AF)	Peak (cfs)	Volume (AF)	Peak (cfs)	Volume (AF)	Volume (AF)
Static Volume (top of weir extension)		13.9		11.8		10.5	36.2
Inflow	292	54.3	207	54.2	90	54.2	
Primary Outflow (9"x12" Orifice for A/B or 24" outfall pipe for C)	11	25.6	10	36.1	35	54.1	
Secondary Outflow (concrete overflow weirs)	196	28.6	79	18.2	0	0.0	
Storage at Peak Elevation		16.0		12.8		7.9	36.7
Peak Elevation	12" above weir		7" above weir		19" below weir		

This pond system was constructed in 1976. Due to the age of this system it is recommended that the 24 inch outfall that extends from Pond C to Alkali Creek be video inspected in order to confirm the integrity of the pipe. It is imperative that this outfall pipe functions as designed.

It is also recommended that an auxiliary outfall route be defined for Ponds A, B, and C should the ponds overflow. See Exhibit 7 under Appendix G for Pond "C" Outfall Route Options. The existing 24 inch outfall could be paralleled with another outfall pipe to be used only in overflow conditions. This option would require a floodplain permit and most likely a Conditional Letter of Map Revision from FEMA since this outfall would increase the peak discharge into Alkali Creek during these major storms and would also require work in the floodplain. Another option is to define and purchase a drainage easement through the Moon Valley Subdivision. This is the route where the overflow naturally flows. However, this option would require improvements to Moon Valley Road along with the purchase of a developed lot just downstream from Pond C. In addition, this outfall route takes the overflow to Alkali Creek Road. This section of road is commonly flooded during major storm events. The City of Billings may require storm drain improvements to Alkali Creek Road with this option. These auxiliary outfall routes are intended to function only for storms larger than the 100-year, 24-storm or in the event that the 24 inch discharge pipe fails or becomes plugged.

6.1.2 Adopt a Stormwater Maintenance Plan

Proper maintenance is essential to the operation of the airport stormdrain system. It is recommended that the airport adopt a stormdrain system maintenance plan that includes at least the following guidelines.

The Federal Aviation Administration (FAA) Advisory Circular, AC 150/5320-5C, Section 8-2.3 dated 9/29/2006 describes the proper maintenance for storm water storage facilities. The ponds should be inspected during and after major storm events to ensure that the inlets and outlets are still functioning as designed, and that no damage or clogging has occurred. Pond bottoms should be mowed at least twice a year. Sediment, debris, and litter should be cleared from the ponds at least twice a year, especially around outlet structure to prevent clogging.

This AC states that "inlet and outlet devices and standpipe or riser structures have been known to deteriorate with time, and may have to be replaced. The actual life of a structural component will depend on individual, site-specific criteria, such as soil conditions." The outlet structures of each pond should be visually inspected at least once per year. It is recommended that the 24 inch outfall pipe that extends from Pond C to Alkali Creek should be inspected through video in order to determine its condition. It is imperative that all outfall devices function as designed.

6.1.3 Define Drainage Routes

Morrison Maierle, Inc. and Billings Logan International Airport have begun conversations with the City of Billings to explain the challenges presented when development occurs in a natural drainage way. As we move forward and development continues in the Alkali Creek area it is imperative that these natural drainage ways be defined and preserved. Coordination between the airport and the City of Billings and Yellowstone County needs to occur in order to determine the best way to define and preserve these drainage routes. One option would be to define the drainage ways and show them as drainage easements on all future subdivision plats and require that developers design around these drainage routes. The City of Billings Stormwater Management Manual dated February 2011 states that natural drainages shall be preserved to the maximum extent possible. It also states that all subdivisions will be required to evaluate and mitigate stormwater runoff entering

(or having the future potential to enter) and leaving subdivision and size facilities as such. Circular DEQ 8 – Montana Standards for Subdivision Storm Drainage dated 2002 states that for flows that originate outside the subdivision, provisions for passing these flows through the subdivision without flooding home sites or drain field sites for a 100-year storm shall be present in the engineering report for storm drains for subdivisions. The natural channels, swales, and ravines that naturally extend from the airport must be preserved in order to pass these flows through subdivision development. It is recommended that a drainage path be defined for each drainage area that drains to the Alkali Creek Area (See Areas A-J on Exhibit 4).

6.1.4 Pond E Improvements – Phase 1

As noted above, HydroCAD estimates that Pond E has a peak elevation one inch below the overflow weir for a 100-year, 24-hour storm. Pond E has 3.5 feet of freeboard from the top of the concrete overflow weir to the top of the berm. It is recommended that the concrete weir be raised one foot in order to provide additional storage. This would leave a 2.5 feet of freeboard. This will ensure that the 100-year, 24-hour storm can safely be detained in this pond. This pond will need to be further expanded in the future in order to accommodate more airport development.

It is recommended that a drainage easement be defined from the overflow structure at Pond E down to Alkali Creek. This drainage easement should be extended up to the airport property line near the discharge of the short pipe network segment. This ravine carries both the discharge from Pond E, the overflow from Pond E, and the surface runoff from Area I. This area is currently undeveloped, however it is recommended that a drainage easement be obtained as this area is expected to be developed in the near future. See Exhibit 9 under Appendix G for Pond “E” Outfall Route Options.

6.1.5 Permitting for Pond D Outfall Route

In order to keep up with continued airport development an enlarged pond system will eventually be needed. Pond D currently discharges through a 10 inch ductile iron pipe and continues through Sun Valley Road through surface flow. It is recommended to begin permitting applications as soon as possible for an outfall route in order to plan for the proposed enlargement of Pond D. In order to install a pipe from Pond D to Alkali Creek a City of Billings Floodplain Application must be submitted. Technical information will be processed through the Montana Department of Natural Resources and Conservation, Floodplain Section and /or the Federal Emergency Agency, as required. Upon review, a Conditional Letter of Map Revision may be required. Permitting for this type of work may require an extensive amount of effort and time. It is recommended to get this process started as soon as possible.

6.2 CIP IMPROVEMENTS

The following recommended improvements are those determined to be the next highest priority. It is recommended that the following improvements be planned into the 5-year Capital Improvement Plan for FY 2012-2017.

6.2.1 Bore Runway Pipe Crossing

The existing pipes crossing under Runway 10L/28R are over capacity for the 100-year, 24-hour storm. This excess runoff overflows the manholes and surface flows downstream and eventually into Ponds A, B, and C. In order to plan for future airport development and to route stormwater to the new enlarged Pond D a new runway pipe crossing is recommended. It is likely feasible to install two additional runway 10L28R large storm drain pipe of 36" diameter for future drainage improvements.

6.2.2 Enlarge On-Site Detention

The area east of Taxiway "A" East is currently acting as a mini-detention area. The 24 inch culvert crossing at the end of Runway 28 is undersized and restricting flow downstream, thus creating a small temporary pond on its south end during storm events and providing additional storage capacity for Ponds A, B, and C. The ponding that occurs in this location does not currently pose operational or safety problems. It is estimated that this area is currently capable of storing approximately 4 Acre-Feet of storm water that would otherwise be sent directly to Pond A, B, and C. This area could be enlarged for onsite detention and the 24 inch inlet restricted to provide a slower flow rate to Ponds A, B, and C. It is estimated that this storage volume could be almost doubled from 4 Acre-Feet to 8 Acre-Feet

6.2.3 Install Standpipe at Area K Highway 3 Crossing

It is recommended that a standpipe be installed at the entrance to the pipe that crosses under Highway 3 at the pipe that collects surface runoff from Area K. A standpipe entrance similar to Area M would slow down the peak discharge rate and slowly release it through the existing crossing culvert. However, this pipe is not an airport pipe and the majority of the runoff contributing to this crossing is not airport property. This improvement would need to be completed by the Montana Department of Transportation.

6.2.4 Pond D Improvements

It is recommended to enlarge Pond D to increase detention storage. One possible scenario would be to divert the outflow from Pipe 117 into Pond D. The enlarged Pond D would need to be expanded to detain an additional 13 acre-feet of runoff volume for a 100-year, 24-hour storm. The outflow from Pipe 356 could also be directed into enlarged Pond D. This would direct an additional 13 acre-feet from Ponds A, B, and C and into enlarged Pond D for a 100-year, 24-hour storm. The pond should be designed to detain the 100-year, 24-hour inflow.

The enlarged Pond D could be discharged through the existing 10 inch ductile pipe and continue to surface flow through Sun Valley Road. However, this subdivision is already in need of storm drain improvements. It is recommended to install a discharge pipe from Pond D to Alkali Creek once the outfall route is approved through the permitting process described above. It is also recommended that an auxiliary route be defined from Pond D down to Alkali Creek should the pond overflow.

See Exhibit 8 under Appendix G for Pond "D" Outfall Route Options. The Sun Valley Outfall Route is the approximate current outfall route of the existing 10 inch ductile iron pipe that drains Pond D. This is the preferred route for both the outfall and auxiliary outfall route for Pond D. The area north of Pond D downstream of the overflow pipe has numerous lots that have been subdivided but that are not yet built upon. The Pine Tree Outfall Route extends through mostly undeveloped land

down to Alkali Creek. The Prickley Pear Outfall Route extends through undeveloped land and into Prickley Pear Drive. Storm Drain Improvements to this street would be necessary if this route was used.

6.2.5 Redirect Stormwater into Pond D

Once Pond D is enlarged and an outfall route is installed, work can begin on redirecting stormwater into Pond D. This will involve installing pipe from the north side of Runway 10L/28R to Pond D. This would alleviate some of the stormwater inflow into Ponds A, B, and C and would add inflow into the new enlarged Pond D.

6.2.6 Glycol Treatment Improvements

BLIA uses glycol (Cryotech E36 Liquid runway Deicer) to deice airplanes in the winter. This de-icing occurs only in Drainage System One. Each spring the first major rainfall washes the glycols that have accumulated on the airport and carries it through the pipe network, through Ponds A, B, and C, and then discharges into Alkali Creek. In 2005, Morrison Maierle, Inc. prepared a Glycol Runoff Study for Drainage System One using MIKE SWMM in order to assist BLIA personnel in estimating when to sample storm water discharging from the pond outfall. This model included numerous updates to the storm drain system since the 1996 Storm Drain Master Plan. These changes include the Runway Incursion Prevention Road, New Taxiway J, new slotted drain, Cargo Apron Slots 1, 2, and 3, Taxiway D improvements, parking lot improvements, and a new tower. This memo discusses options for methods to obtain storm water samples. Currently, airport staff obtains samples manually at the discharge of Ponds A, B, and C in Alkali Creek after the first major spring storm event.

Prior to the relocation of Taxiway "E" the area between Taxiway "E" and Taxiway "C" south of RW 10L/28R served as a mini-detention area and glycol surface treatment area. In 2009, this surface flow became pipe flow. This area collects most of the winter time glycol runoff. Additional treatment would be provided by allowing this runoff to surface travel to the inlet at Taxiway C. However, the preferred improvement would be to allow for surface treatment prior to discharge into new enlarged Pond D.

In 2013 Runway 10L/28R will be rehabilitated. The porous friction course will be milled off and replaced with a dense graded and grooved surface. The new surface will require the use of more de-icing products resulting in potentially more pollutant discharge into Alkali Creek. Although much of this runoff will be surface treated, the water quality readings will need to continue to be monitored to determine if a separator will be needed.

6.3 FUTURE IMPROVEMENTS

The following recommended improvements are those that will be needed as the airport develops. It is estimated that the following improvements should be planned for FY 2017-2032.

6.3.1 Pond E Improvements – Phase 2

As noted above, it is recommended that the concrete weir be raised one foot in order to provide additional storage immediately. However, as the airport continues to develop on the west end and more impervious surface is added, Pond E will eventually need further expansion. It is also

recommended to construct a small earth detention area (or series of detention areas) across this ravine to slow the peak discharge rate before it reaches downstream land.

6.3.2 Install Additional Pipe into Pond E

Additional stormwater pipe will need to be installed in order to get the stormwater into the new enlarged Pond E.

6.3.3 Slow Peak Discharge Rate for Area J Outfall

Area J consists of 1543 Acres of mostly undeveloped land. This area all naturally drains down to Alkali creek at a peak rate of 198 cfs and a runoff volume of 120 acre-feet during a 100-year, 24-hour storm. This is a substantial amount of runoff and a relatively high discharge rate. It is recommended that a series of small earth detention structures be constructed along the ravine in order to slow down the runoff rate. An easement should be obtained down this ravine from the airport property to Alkali Creek to ensure that this drainage path is preserved once development takes place downstream.

6.4 OFFSITE IMPROVEMENTS

Multiple homes in the Alkali Creek subdivisions located beneath the airport have experienced damage due to stormwater runoff. Many of these homes could benefit from enlarging their driveway culverts, as many are substantially undersized. Another off-site recommendation would be to ensure that each home has a 5 percent slope away from the foundation of the houses, which may require grading a small ditch or swale around the structure to provide a route for the stormwater runoff to continue downstream.

Over the years, multiple homes and subdivisions were built in natural drainage channels that have always existed between the airport and Alkali Creek. It is imperative that these drainage channels be defined and maintained as this Alkali Creek area continues to develop.

6.5 FUTURE DEVELOPMENT

There are immediate plans for commercial development south of Taxiway C and Taxiway B. This will add additional impervious area to Drainage System 1. Immediate improvements to Ponds A, B, and C are recommended as noted above.

Future development plans include the construction of Air Cargo Slot 4. This improvement would add more impervious surface along with additional storm drain that would tie into an already overloading system to Ponds A, B, and C. This runoff could be directed to Pond D or Pond E but would require a new crossing under runways and/or taxiways.

The airport also has plans to extend Runway 7/25 to the west, build new General Aviation (GA) hangars, and construct a new apron next to the GA hangars. This will add additional impervious areas that all drain into Pond E, which is already at capacity during a 100-year, 24-hour storm. As development continues on the west end of the airport, Pond E will need to be enlarged to handle the increased inflow.

BIBLIOGRAPHY

Advisory Circular 150/5320-5C-Surface Drainage Design, U.S. Department of Transportation Federal Aviation Administration, 9-29-2006.

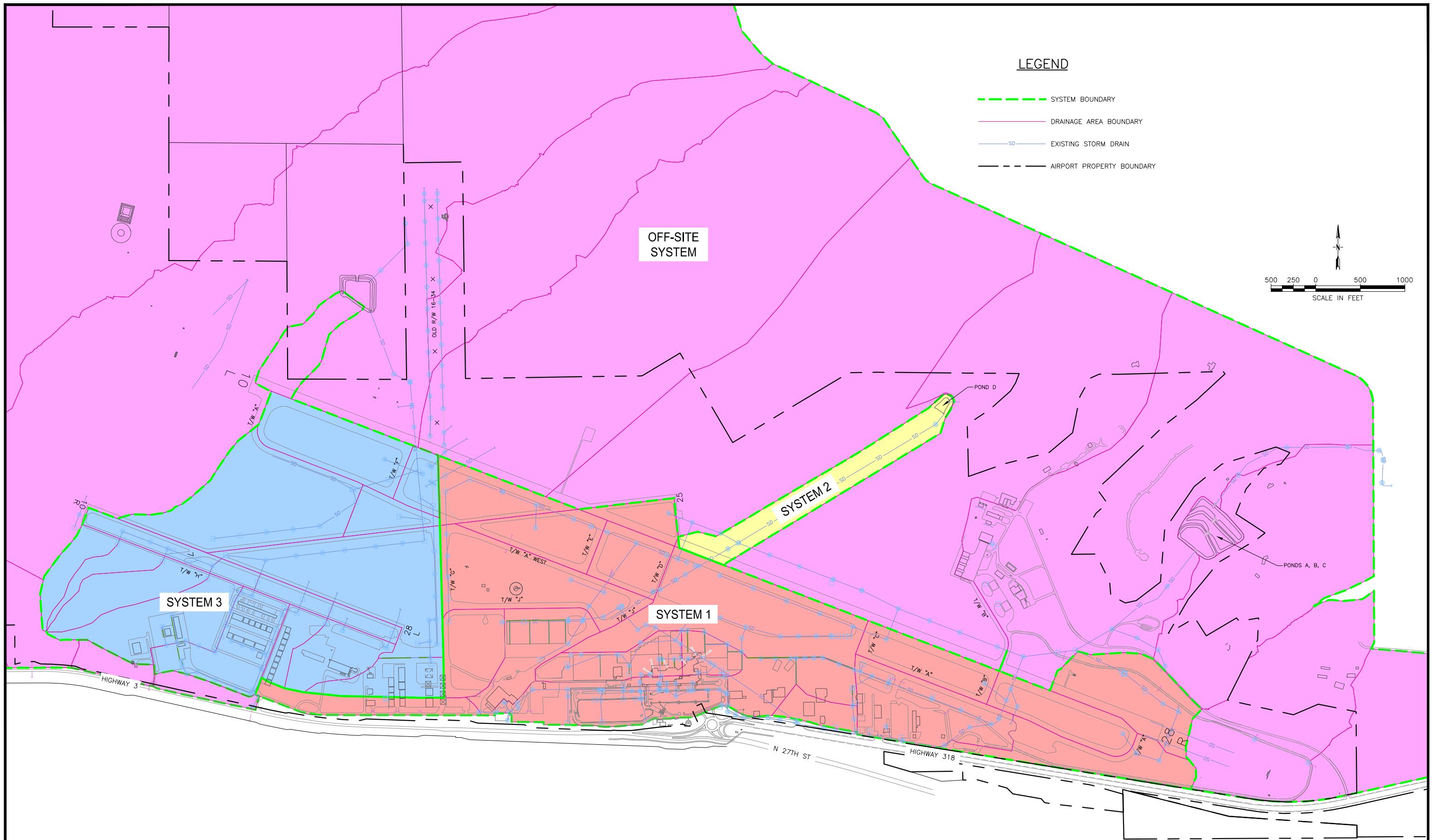
BLIA Glycol Runoff Study, Morrison Maierle, Inc., January 5, 2005.

Circular DEQ 8, Montana Standards for Subdivision Storm Drainage, 2002 Edition.

Master Plan, Billings Logan International Airport, Mead & Hunt, March 2010.

Storm Drainage Master Plan for Billings Logan International Airport, Airport Commission, Billings, Montana, Hurlbut, Kersich & McCullough, April 1975.

Storm Drain Master Plan, Billings Logan International Airport, Billings, MT, AIP 3-30-0008-07, HKM Associates, January 1989.


Storm Drainage System Master Plan, Billings Logan International Airport, Morrison Maierle, Inc., March 1996.

Stormwater Management Manual, Public Works Department, City of Billings, Montana, February 2011.

Valley Heights Road Extension and Sun Valley Road – RSID 691 Drainage Investigation Report, Yellowstone County Department of Public Works, Morrison Maierle, Inc., December 1, 2004.

APPENDIX A

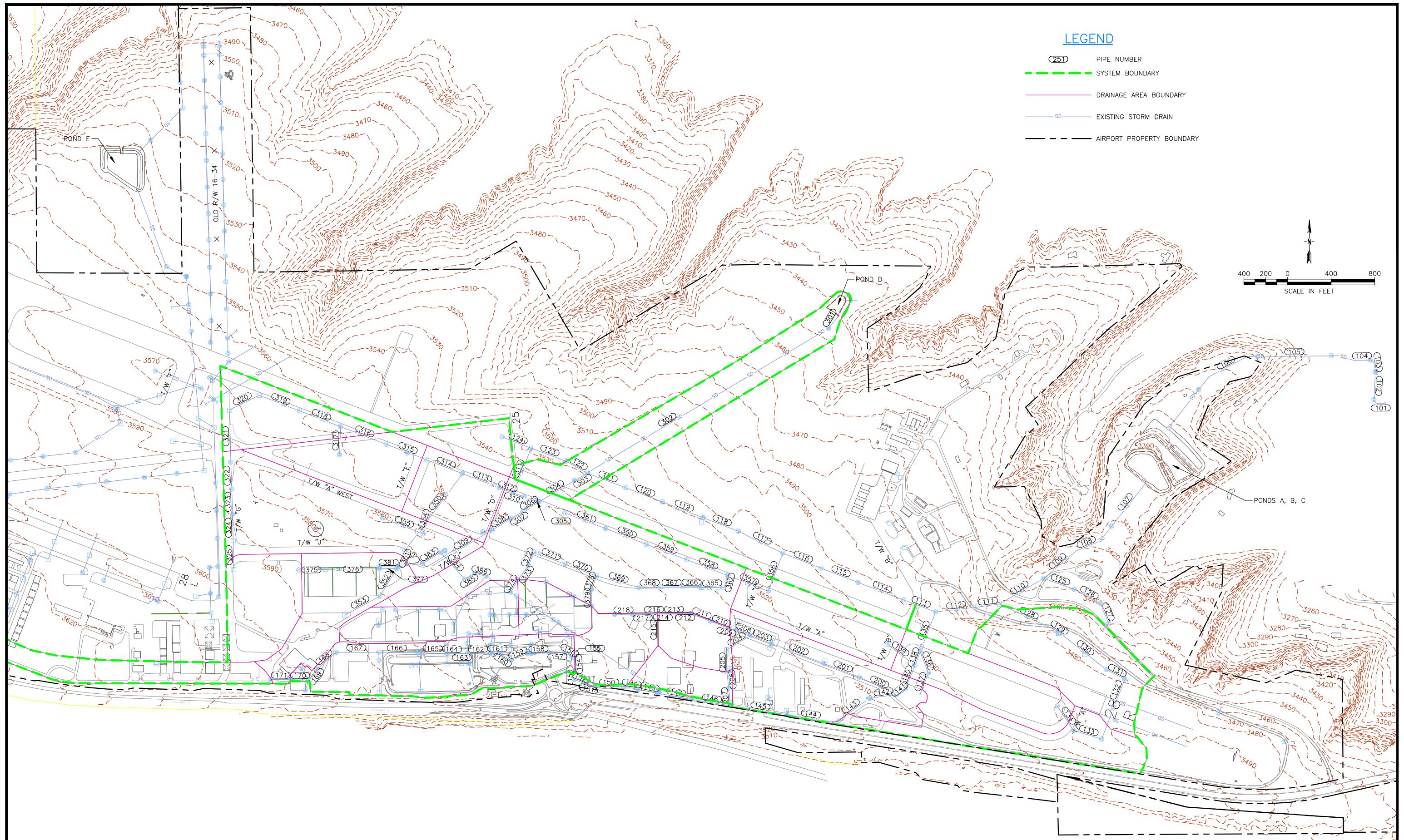
Storm Drainage System Site Plans

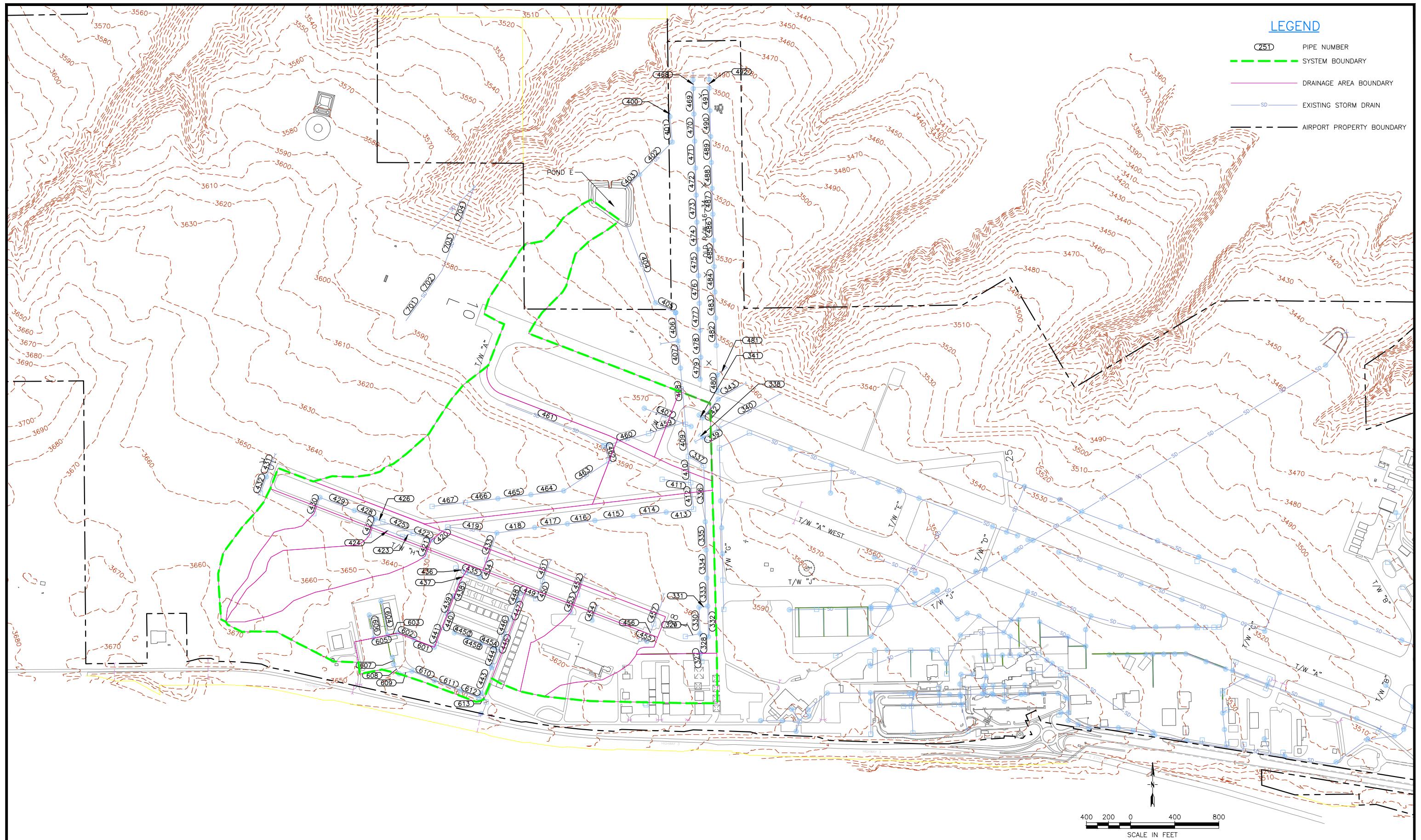
VERIFY SCALE!
THESE PRINTS MAY BE
REDUCED. LINE BELOW
MEASURES ONE INCH ON
ORIGINAL DRAWING.
MODIFY SCALE ACCORDINGLY!

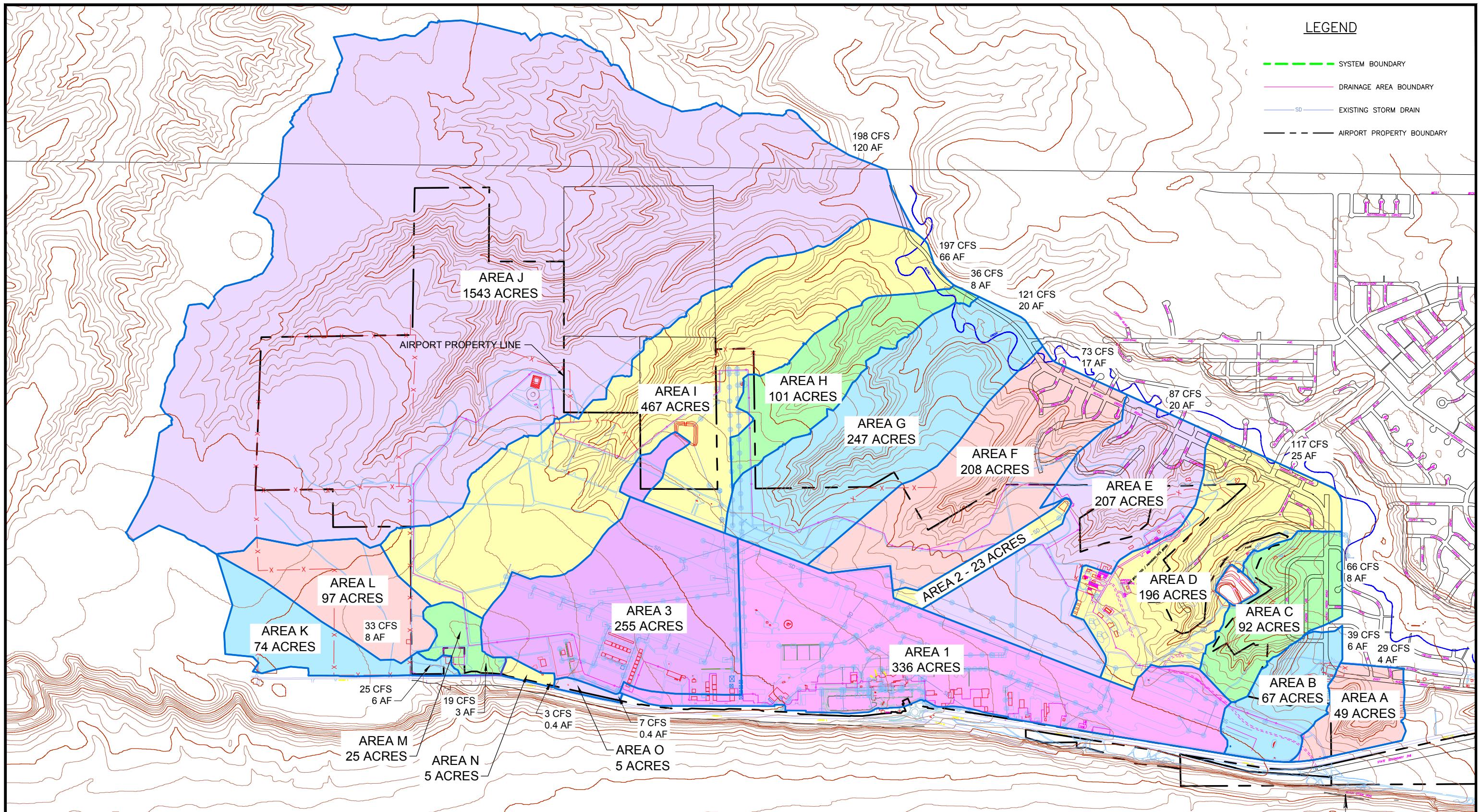
REVISIONS

NO.	DESCRIPTION	DATE	BY

**MORRISON
MAIERLE, INC.**
An Employee-Owned Company


315 N. 25th Street, Suite 102
Billings, MT 59101
Engineers
Surveyors
Scientists
Planners
Phone: (406) 656-6000
Fax: (406) 237-1201
COPYRIGHT © MORRISON-MAIERLE, INC., 2010


DRAWN BY: _____
DSGN. BY: _____
APPR. BY: _____
DATE: _____
Q.C. REVIEW
BY: _____
DATE: _____


BILLINGS LOGAN INTERNATIONAL AIRPORT

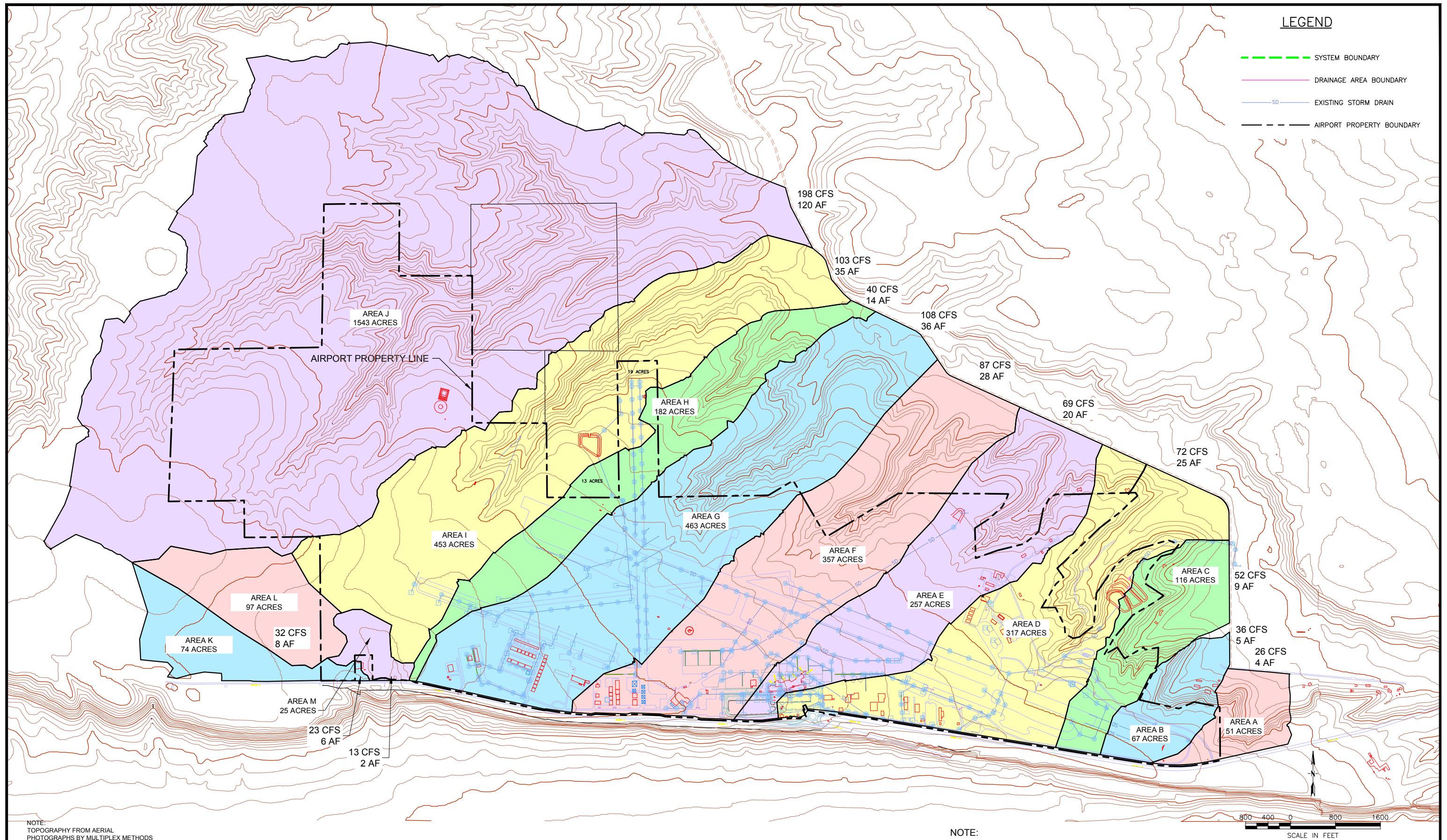
OVERALL DRAINAGE SYSTEM SITE PLAN

PROJECT NUMBER
SHEET NUMBER
DRAWING NUMBER
EXH 1

NOTE:
TOPOGRAPHY BASED ON CITY OF BILLINGS AVIATION
AND TRANSIT DEPARTMENT 1996 DIGITIZED CONTOURS.

NOTE:
RUNOFF PEAKS AND VOLUMES ARE ESTIMATED
BASED ON A 100-YR, 24-HR STORM.

A horizontal scale bar with tick marks at 800, 400, 0, 800, and 1600. Below the bar, the text "SCALE IN FEET" is centered.


Engineers 315 N. 25th Street, Suite 102
Surveyors Billings, MT 59101
Scientists
Planners Phone: (406) 656-6000
Fax: (406) 237-1201

DRAWN BY: _____
DSGN. BY: _____
APPR. BY: _____
DATE: _____
Q.C. REVIEW
BY: _____
DATE: _____

BILLINGS LOGAN INTERNATIONAL AIRPORT

MONTANA	PROJECT NUMBER
	SHEET NUMBER
	DRAWING NUMBER EXH 4

NOTE:
TOPOGRAPHY FROM AERIAL
PHOTOGRAPHS BY MULTIPLEX METHODS
AND PLANETABLE SURVEYS 1957.

NOTE:
RUNOFF PEAKS AND VOLUMES ARE ESTIMATED
BASED ON A 100-YR, 24-HR STORM.

VERIFY SCALE!
THESE PRINTS MAY BE
REDUCED. LINE BELOW
MEASURES ONE INCH ON
ORIGINAL DRAWING.

V:\2447\085\ACAD\Exhibits\EXHIBIT-5.dwg Plotted by Kent Kuehn on 2/23/12

315 N. 25th Street, Suite 102
Billings, MT 59101
Phone: (406) 656-6000
Fax: (406) 237-1201

DRAWN BY: _____
DSGN. BY: _____
APPR. BY: _____
DATE: _____

Q.C. REVIEW
BY: _____
DATE: _____

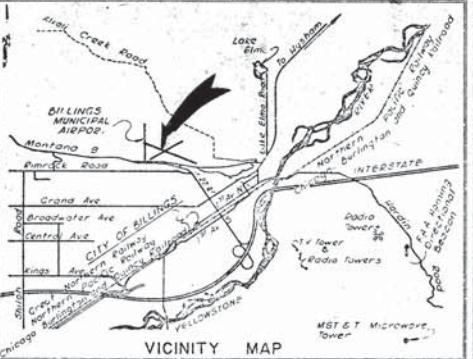
BILLINGS LOGAN INTERNATIONAL AIRPORT

ANA	PROJECT NUMBER
	SHEET NUMBER
	DRAWING NUMBER
	EXH 5

APPENDIX B

Record Drawings -
Selected Plan Sheets

A.D.A.P.-07

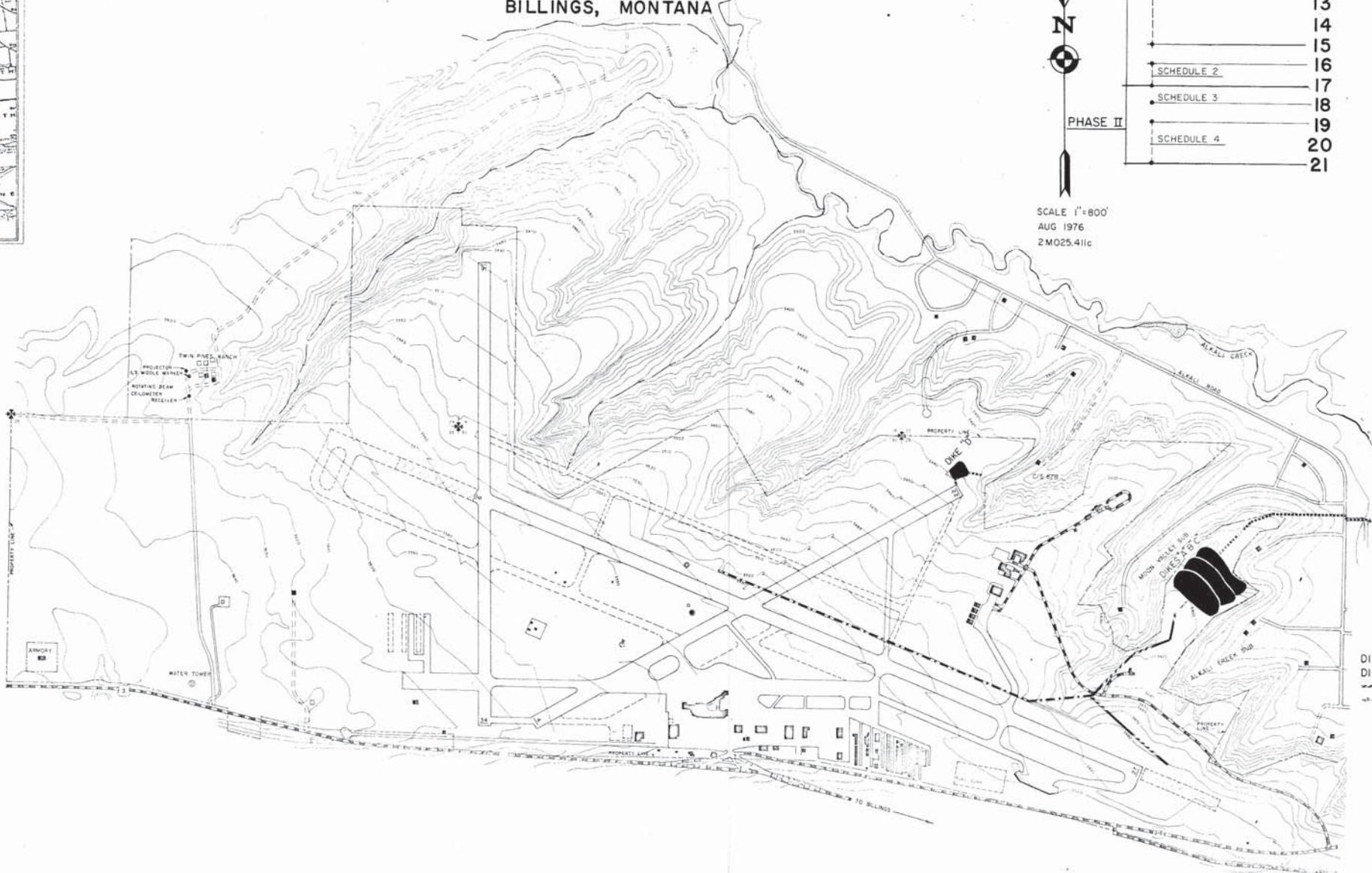

(Selected Sheets) for Ponds A, B, C, D, (1977)

LOGAN FIELD AIRPORT STORM SEWER PHASE I AND II

Prepared By

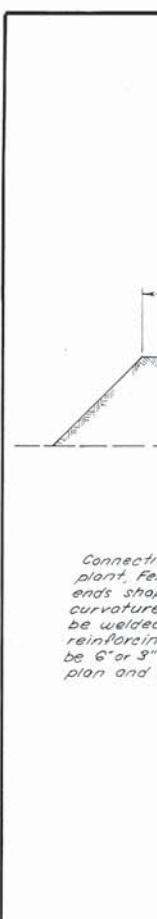
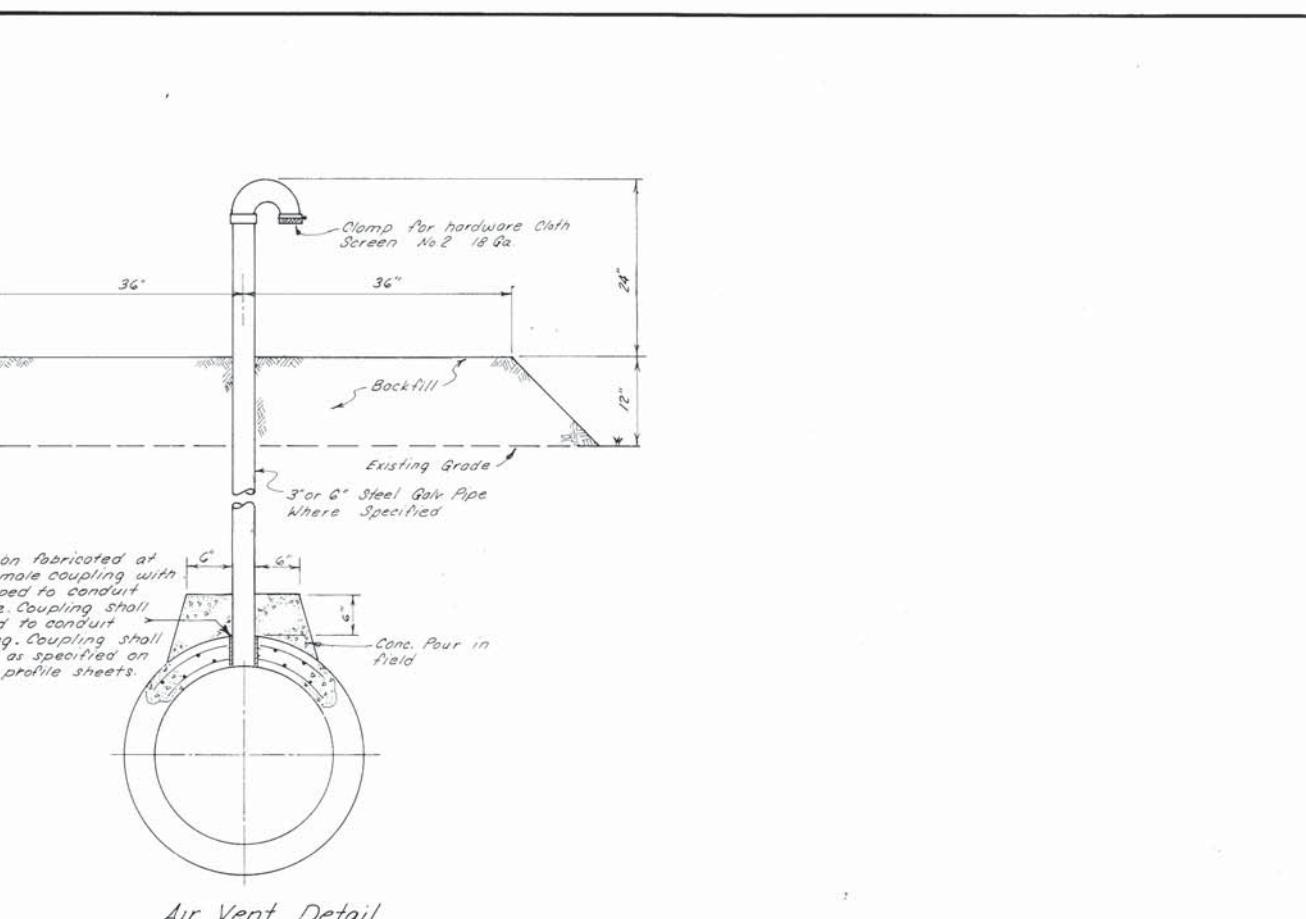
HURLBUT, KERSICH & McCULLOUGH
CONSULTING ENGINEERS

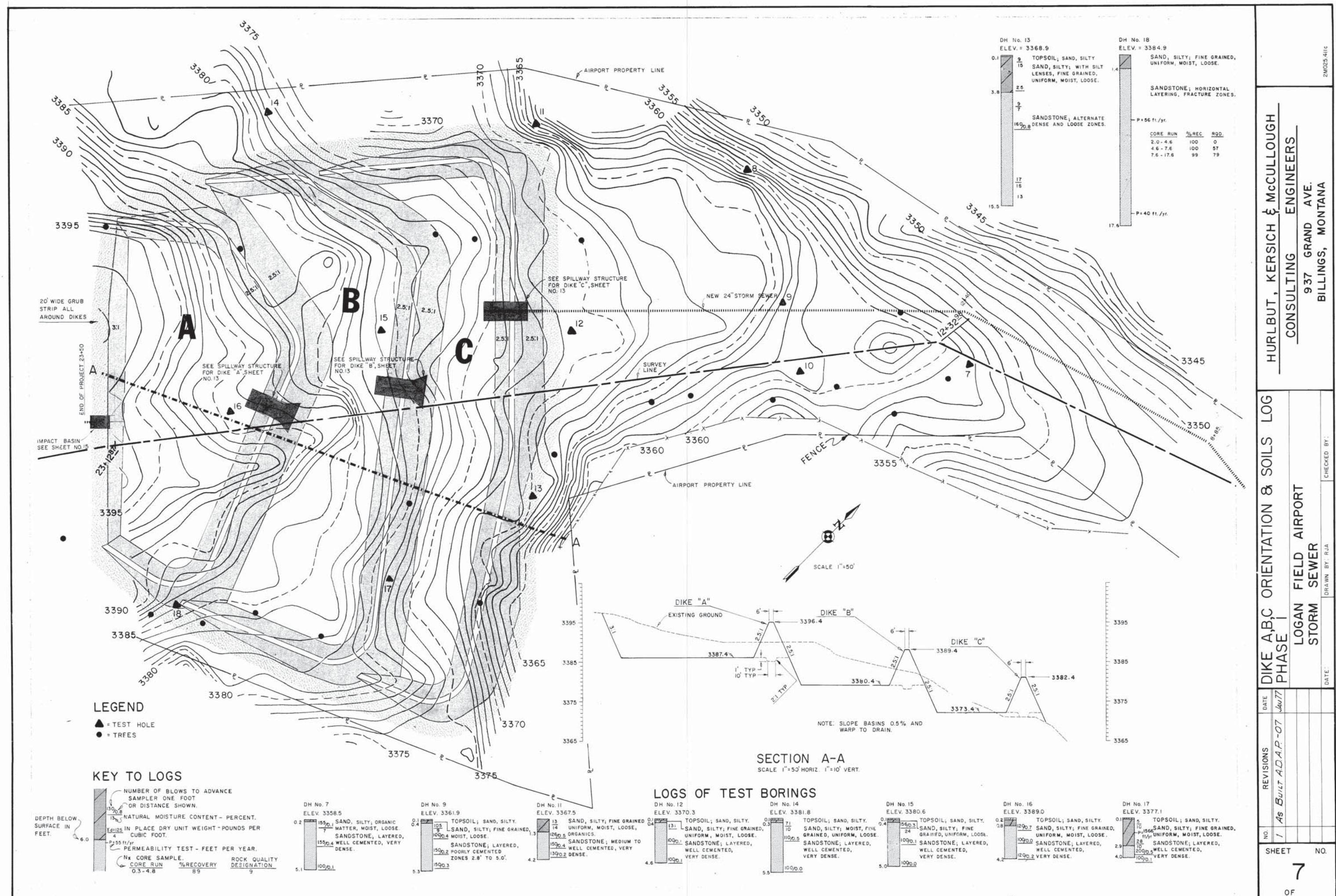
937 GRAND AVE.
BILLINGS, MONTANA

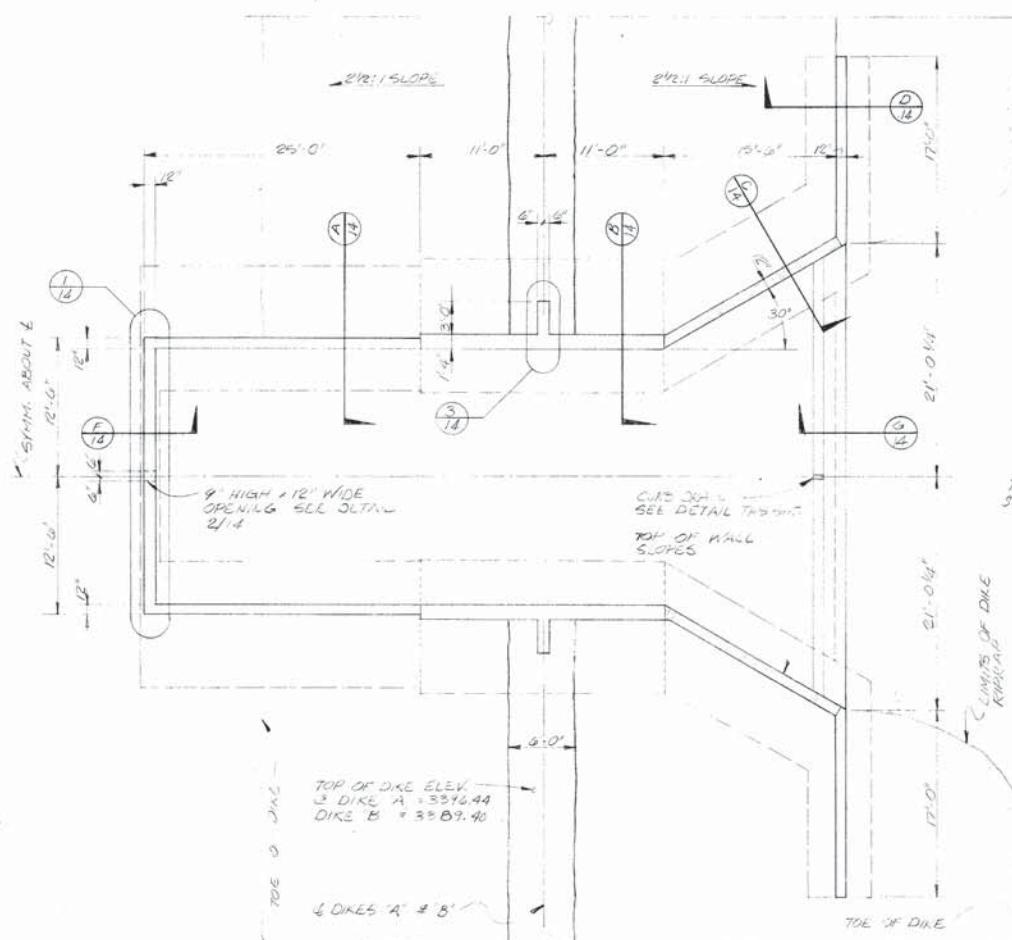

SHEET NO.

INDEX
DESCRIPTION

1	QUANTITY SUMMARY
2	PROJECT INDEX
3	OUTFALL LINE
4	TRASH RACK, VENT, OPEN CHANNEL
5	AND ENERGY DISSIPATOR DETAILS
6	RETAINING COLLAR & OUTLET WORKS
7	DIKE A,B,C ORIENTATION & SOIL LOGS
8	DIKE A,B,C LAYOUT
9	DIKE A,B,C CROSS-SECTION INDEX
10	DIKE A,B,C CROSS-SECTION
11	DIKE A,B,C DROP INLET SPILLWAY
12	DIKE A,B,C DROP INLET SPILLWAY DETAILS
13	BAFFLED IMPACT BASIN
14	DIKE NORTH OF RUNWAY 4-22
15	DETAILS FOR DIKE D
16	PLAN & PROFILE: MH. G21 TO HOLDING PONDS
17	PLAN & PROFILE: MH. G19 TO MH. G24
18	PLAN & PROFILE: MH. G16 TO MH. G20
19	PLAN & PROFILE: MH. G9 TO MH. G14
20	DELETED FROM CONTRACT
21	

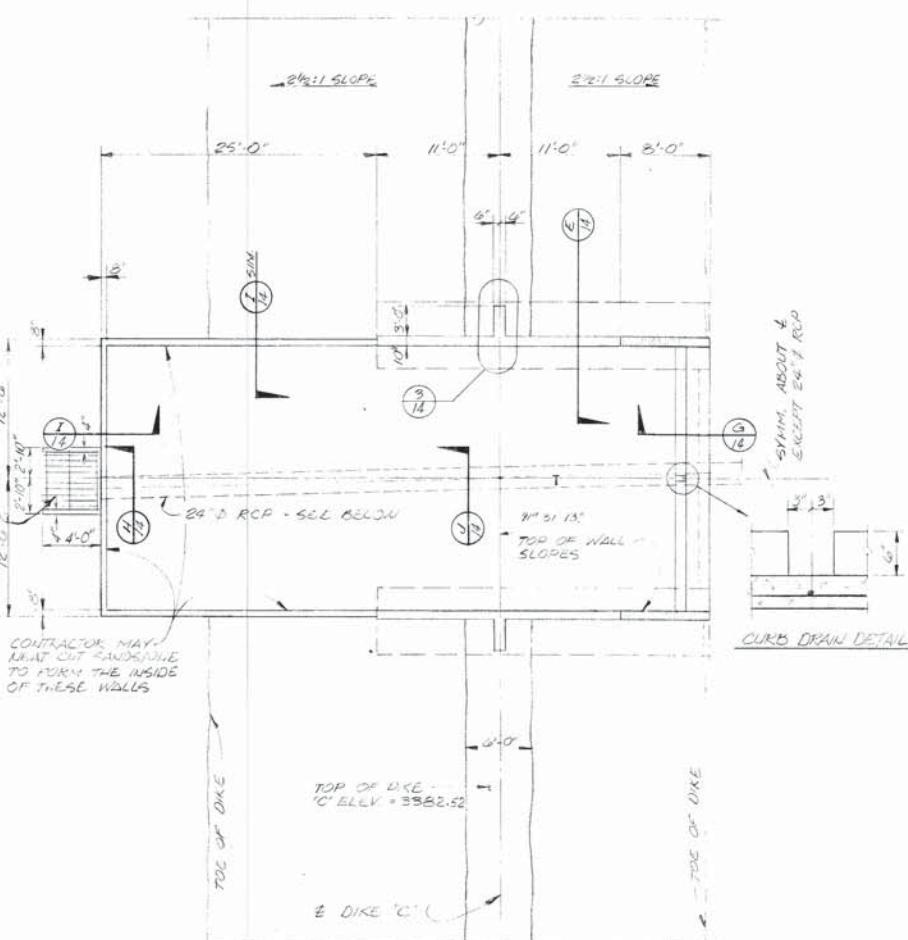


PHASE I	SCHEDULE 1
	10,11 & 12
	13
	14
	15
	SCHEDULE 2
	16
	SCHEDULE 3
	17
	SCHEDULE 4
	18
PHASE II	19
	20
	21

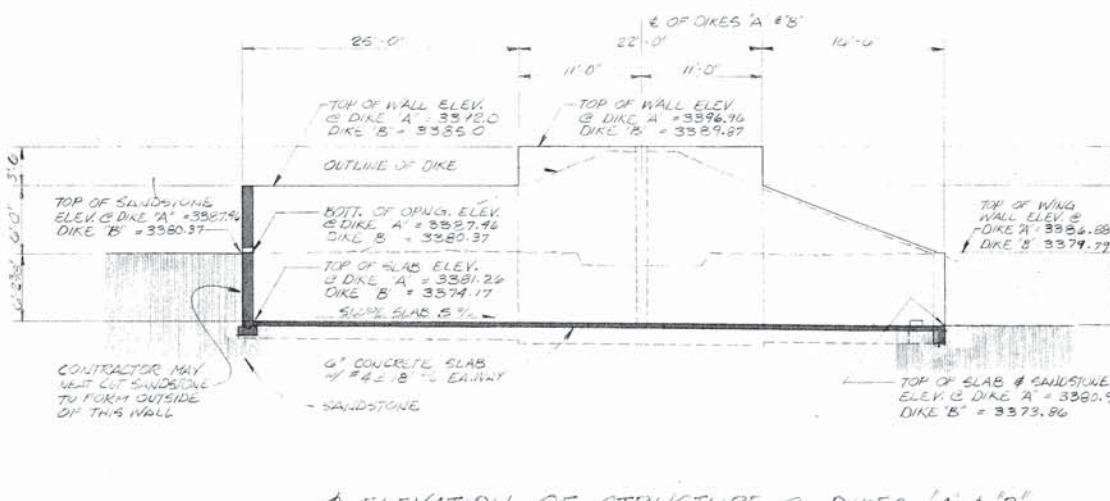

SCALE 1"=800'
AUG 1976
2M025.41c



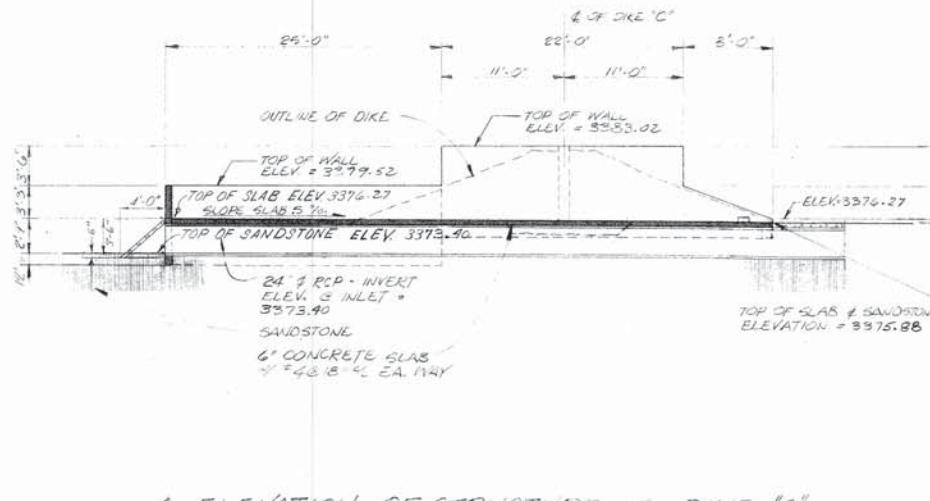
AIRPORT DEPARTMENT
LIBRARY MATERIAL
DO NOT REMOVE

SET NUMBER


<p>Air Vent Detail Scale 1"=1'-0"</p>	<p>Typical Open Channel Section No Scale (Sta -4+70 to Sta -4+90)</p>	<p>HURLBUT, KERSICH & McCULLOUGH CONSULTING ENGINEERS 937 GRAND AVE. BILLINGS, MONTANA</p> <p>TRASH RACK, VENT, OPEN CHANNEL & ENERGY DISSIPATOR DETAILS PH-1 LOGAN FIELD AIRPORT STORM SEWER</p> <table border="1" data-bbox="2970 950 3192 2065"> <tr> <td>NO</td> <td>REVISIONS</td> <td>DATE</td> </tr> <tr> <td>1</td> <td>As Built AD4P-07</td> <td>Jan 77</td> </tr> <tr> <td colspan="2"></td> <td>DRAWN BY: RJA</td> </tr> <tr> <td colspan="2"></td> <td>CHECKED BY:</td> </tr> <tr> <td colspan="3">SHEET NO. 5 OF 5</td> </tr> </table> <p>2M025-41c</p>	NO	REVISIONS	DATE	1	As Built AD4P-07	Jan 77			DRAWN BY: RJA			CHECKED BY:	SHEET NO. 5 OF 5		
NO	REVISIONS	DATE															
1	As Built AD4P-07	Jan 77															
		DRAWN BY: RJA															
		CHECKED BY:															
SHEET NO. 5 OF 5																	


PLAN - DROP INLET SPILLWAY @ DIKES "A" & "B"
SCALE 1/8" = 1'-0"

SCALE 1/8" =


PLAN - DROP INLET SPILLWAY & DIKE 'C'

SCALE 1/8" = 1'-0"

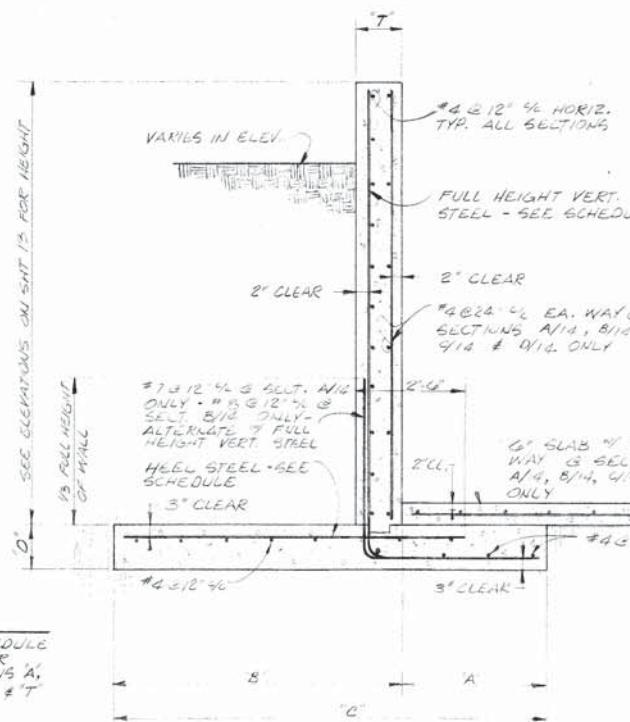
E ELEVATION OF STRUCTURE @ DIKES 'A' & 'B'

SCALL VB

E ELEVATION OF STRUCTURE @ DIKE "C"

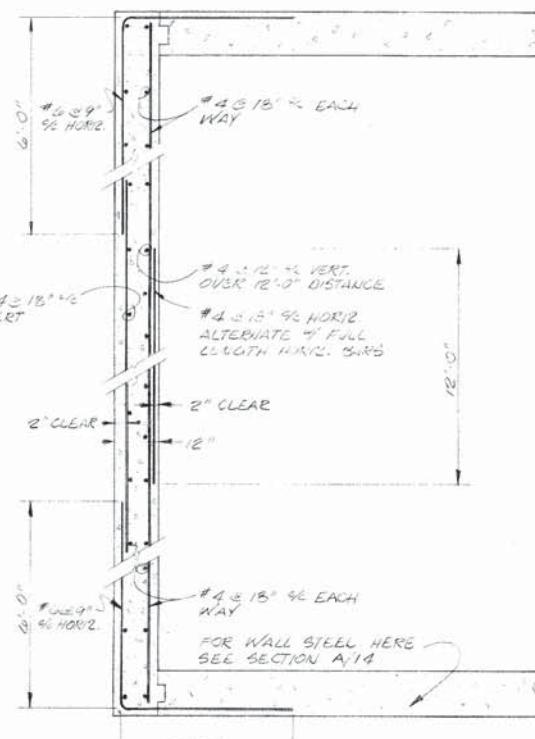
SCALE 1/8" = 1'

GENERAL STRUCTURAL NOTES

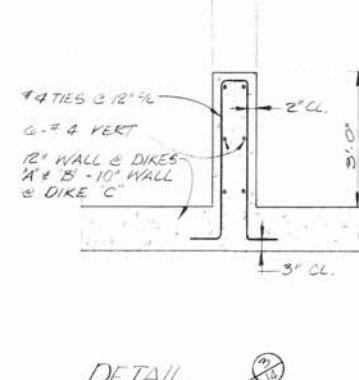

CONCRETE:

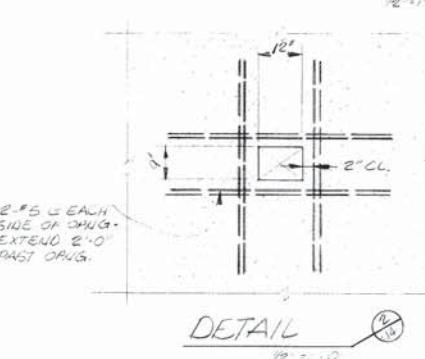
1. ALL CONCRETE TO BE PREPARED, FORMED, PLACED & CURED AS PER ACI CODE OR AS SPECIFIED.
 2. MINIMUM 28-DAY COMPRESSIVE STRENGTH FOR : CONCRETE WALLS & FOOTINGS = 4000 PSI.
SLABS ON GRADE = 4000 PSI
 3. NO WATER IN ADDITION TO THAT SPECIFIED FOR MIX TO BE ADDED AT SITE UNLESS APPROVED.
 4. MINIMUM CEMENT CONTENT = 6 SACKS/CU. YARD
 5. POUR STOPS TO BE MADE AS DIRECTED WITH SUITABLE KEYS, BULKHEADS & REINFORCING.
 6. OPENINGS IN CONCRETE WALLS WITH A DIMENSION OF 1'0" OR GREATER IN EITHER DIRECTION, NOT SHOWN OTHERWISE, TO HAVE TWO #5 BARS EACH SOL EXTENDING 2'0" BEYOND OPENING.
 7. SPLICES IN REBAR TO LAP 30 BAR DIAMETERS, 12" MINIMUM.
 8. PROVIDE ADEQUATE SUPPORT BARS & ACCESSORIES TO HOLD BARS FIRMLY IN PLACE.
 9. MINIMUM CONCRETE COVER OVER BARS & TIES IN : FOOTINGS = 3", WALLS = 2"

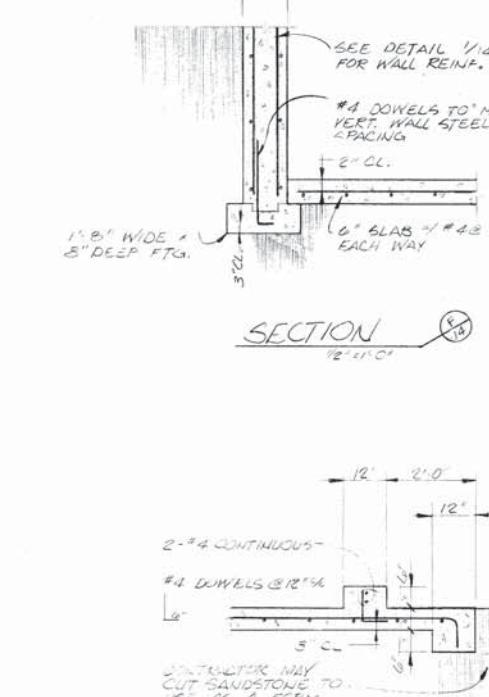
 10. CHAMFER ALL EXPOSED CONCRETE CORNERS AS DIRECTED
 11. ALL REINFORCING BARS WITH A YELL STRENGTH IN EXCESS OF 40,000 PSI TO BE MARKED BY THE MILL IN SUCH A MANNER THAT THE GRADE CAN BE DETERMINED IN THE FIELD.
 12. NO REINFORCING SHALL BE ENCLOSED IN SUCH A WAY AS TO PREVENT OBSERVATION BEFORE THE INSPECTOR HAS A CHANCE TO INSPECT IT.

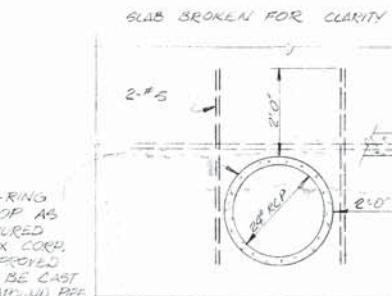

FOUNDATIONS:

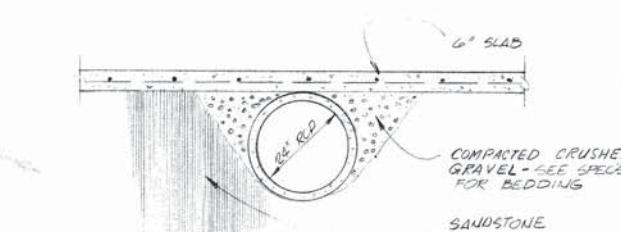
1. FOUNDATIONS & EXCAVATIONS TO BE PROTECTED FROM THE ACTION OF WATER OR FREEZING.
 2. ALL BACKFILL TO BE PLACED STRICTLY ACCORDING TO JOB SPECIFICATIONS. WALLS TO BE PROPERLY BRAZED BEFORE BACKFILL IS PLACED.
 3. IF SKILLS OR OTHER CONDITIONS ARE FOUND WHICH VARY FROM THE CONDITIONS INDICATED ON THE SOILS BORING LOGS, NOTIFY THE ENGINEER BEFORE PROCEEDING WITH WORK.
 4. BRING ALL OVER-EXCAVATION BACK TO REQUIRED GRADE WITH COMPACTED GRAVEL AS PER SPECIFICATIONS.

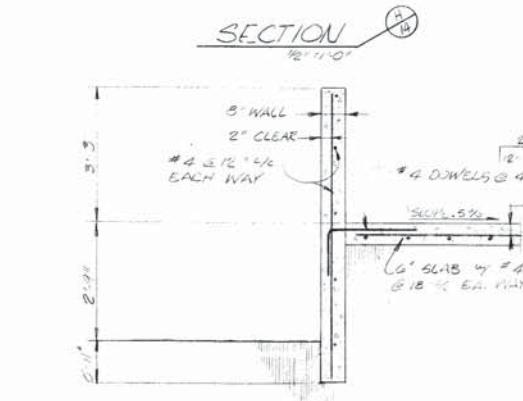

WALL SECT. ON PLAN	DIM. "T"	DIM. "A"	DIM. "B"	DIM. "C"	DIM. "D"	FULL HEIGHT VERT. STILT	HEEL STILT
A/14	12"	3'-9"	7'-6"	11'-3"	12"	#7@12% #7@8%	#7@8%
B/16	16"	4'-0"	8'-3"	12'-3"	14"	#8@12% #7@6%	#7@6%
C/14	18"	3'-3"	6'-6"	7'-9"	12"	#7@12% #7@10%	#7@10%
D/14	12"	2'-0"	3'-9"	5'-9"	12"	#4@12% #4@12%	#4@12%
E/14	10"	2'-0"	4'-0"	6'-0"	12"	#5@12% #4@12%	#4@12%

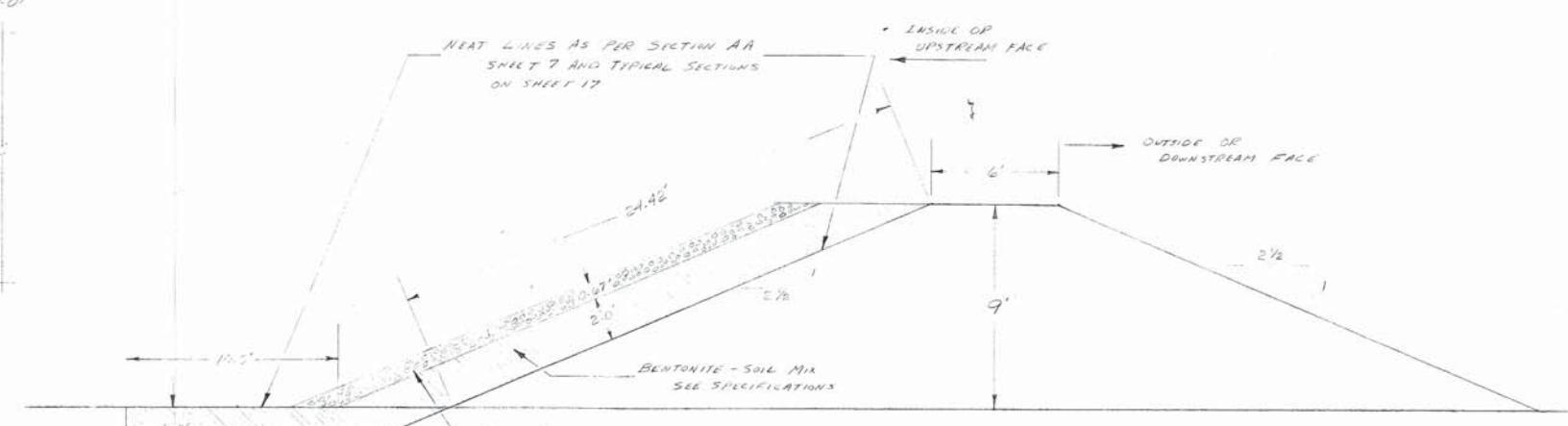

NOTE:
SEE SCHEDULE
ABOVE FOR
DIMENSIONS 'A',
'B', 'C', 'D' & 'T'


DETAIL


DETAIL


DETAIL


SECTION

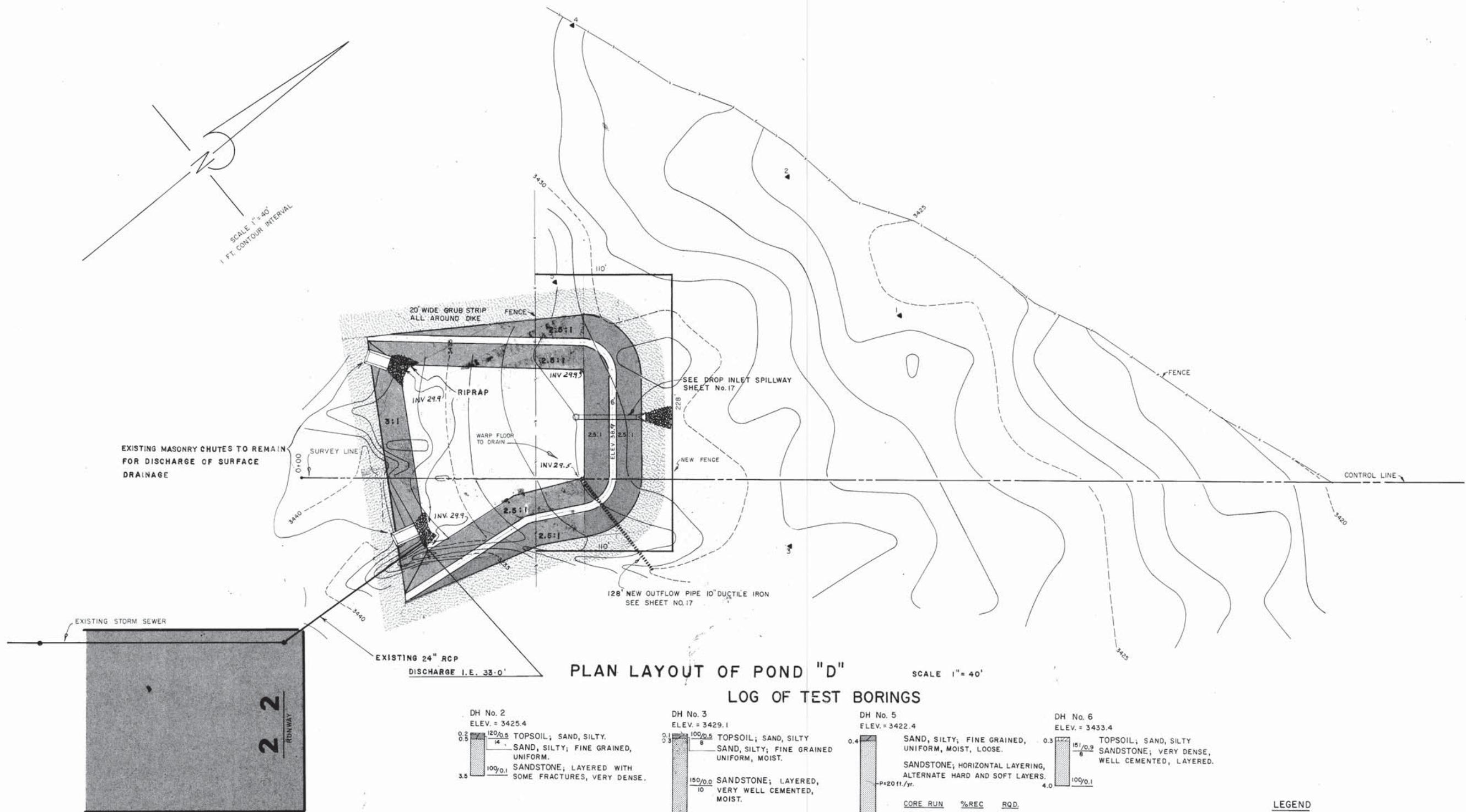

RUBBER O-RIN
WATER STOP
MANUFACTURED
BY CRETEx C
OR AN AFFILIATE
EQUAL TO BE
IN WALL APPLI

— COMPACTED CRUSHED GRAVEL - SEE SPECIES FOR BEDDING

SECTION

Typical Dike Lining Section

PIANE DIRE ZINNI


PONDS A THRU L

TE
77

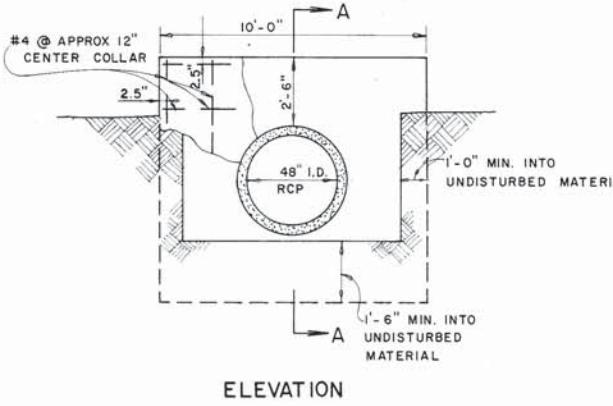
**DROP INLET SPILLWAY
A, B & C DIKES DETAIL
PHASE - I**

PHASE 1
LOGAN FIELD AIRPORT
STORM SEWER

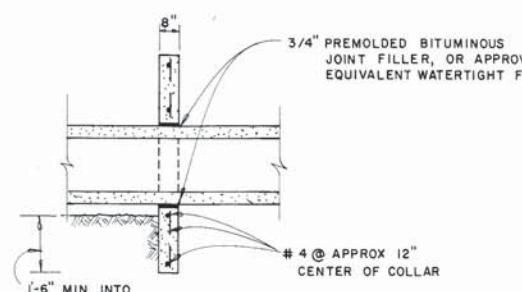
2M025.41c
HURLBUT, KERSICH & MCCULLOUGH
CONSULTING ENGINEERS
937 Grand Ave. Billings, Montana

PLAN LAYOUT OF POND "D"

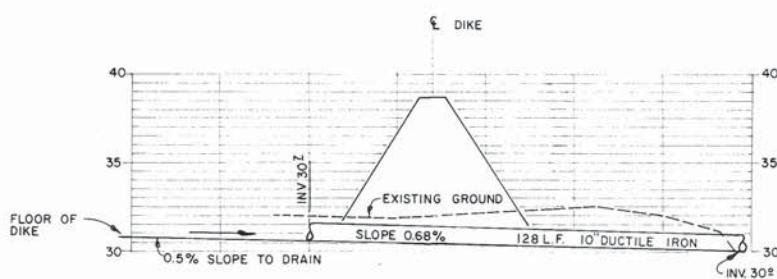
SCALE 1" = 400'


LEGEND

▲ = TEST HOLE

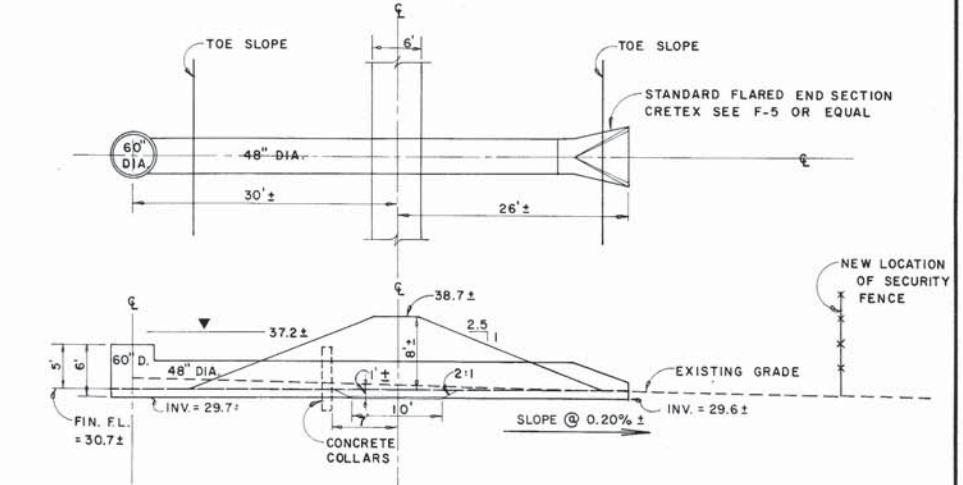

KEY TO LOGS

NUMBER OF BLOWS TO ADVANCE
SAMPLER ONE FOOT
OR DISTANCE SHOWN.
150, 0.8
13 NATURAL MOISTURE CONTENT - PERCENT.
d₁₂₅ IN PLACE DRY UNIT WEIGHT - POUNDS PER
4 CUBIC FOOT.
P=55 ft/yr
PERMEABILITY TEST - FEET PER YEAR.
6.0
NX CORE SAMPLE.
CORE RUN % RECOVERY ROCK QUAL
0 3 4 8 89 DESIGNATION
9

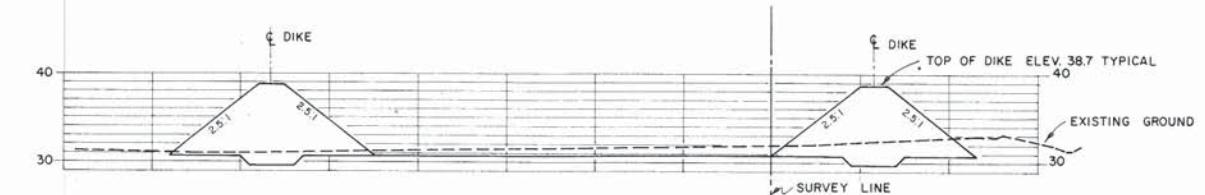

SHEET NO		6	
NO	REVISIONS	DATE	DIKE NORTH OF RUNWAY 4-22
1	As Built ADAP - 07	Jan 77	PHASE - I
		LOGAN FIELD AIRPORT	
		STORM SEWER	
DATE: 3/2/76		DRAWN BY: RJA	CHECKED BY:
<u>HURLBUT, KERSICH & MCCULLOUGH</u> <u>CONSULTING ENGINEERS</u> <u>937 GRAND AVE.</u> <u>BILLINGS, MONTANA</u>			
2 M 025 416			


ELEVATION
CUTOFF COLLAR DETAIL - DIKE "D"

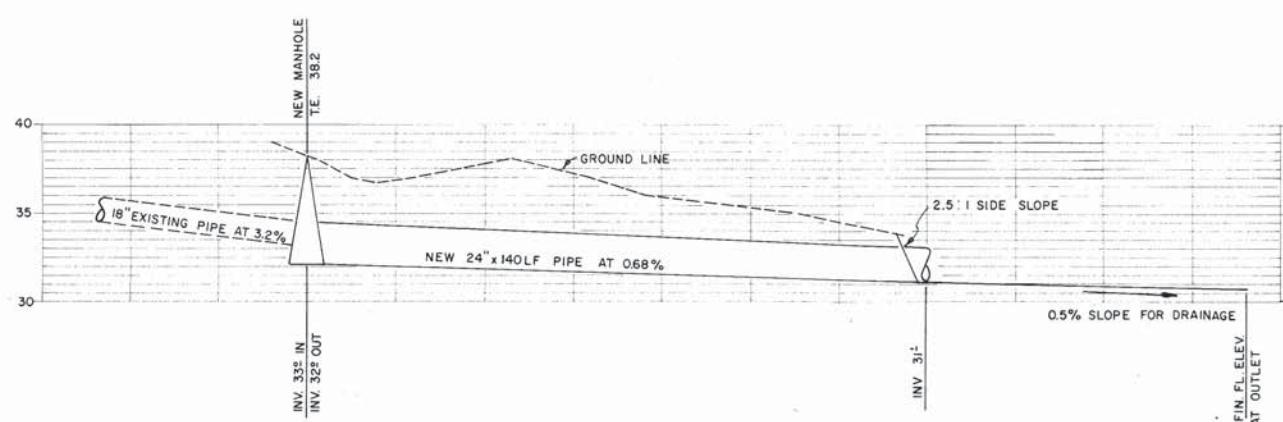
SECTION A-A



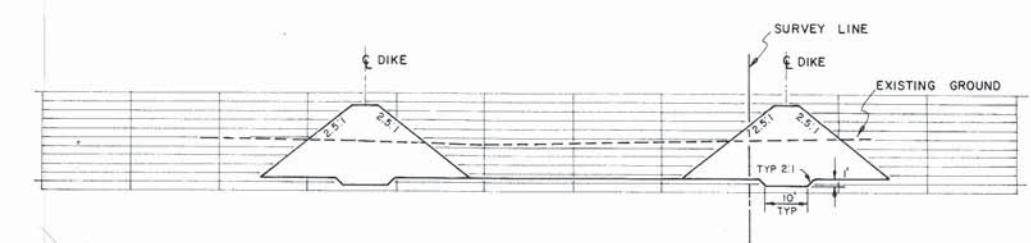
"D" DIKE OUTLET PIPE LINE
SCALE 1"=20' HORIZONTAL & 1"=5' VERTICAL


CONSTRUCTION LINE & TOP OF DIKE

SCALE 1" = 40'



DROP INLET SPILLWAY TYPE-3


SCALE 1" = 10' HORIZ. & VERT.

STA. 2+30

"D" DIKE INFLOW PIPE LINE
SCALE 1"=20' HORIZONTAL & 1"=5' VERTICAL

STA. 1+33

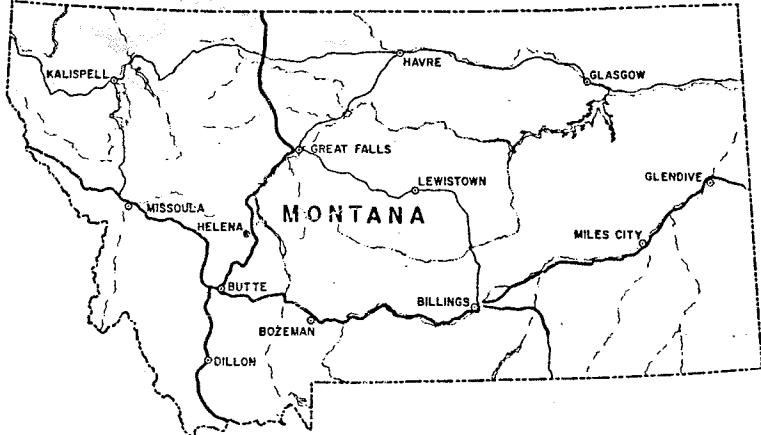
SCALE 1" = 20' HORIZONTAL & 1" = 10' VERTICAL

DETAILS FOR DIKE "D"
LOGAN FIELD AIRPORT
STORM SEWER

DATE: 8/9/76
DRAWN BY: RJA
CHECKED BY:

HURLBUT, KERSICH & McCULLOUGH
CONSULTING ENGINEERS

937 GRAND AVE.
BILLINGS, MONTANA

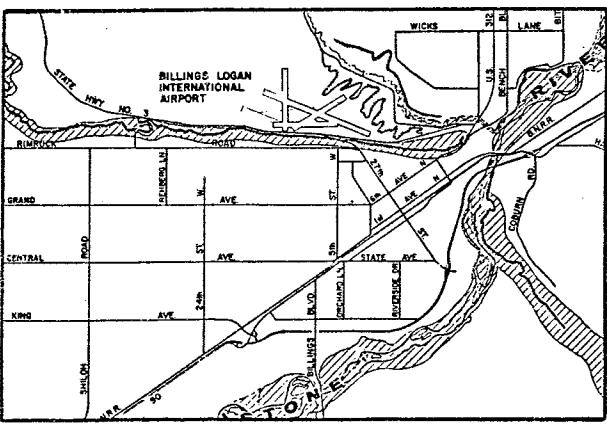

2 MO 45.41c

AIP 3-30-0008-07

(Selected Sheets) for Pond E (1988)

CITY OF BILLINGS

AVIATION AND TRANSIT DEPARTMENT BILLINGS LOGAN INTERNATIONAL AIRPORT


LOCATION MAP

AIRPORT IMPROVEMENT PROGRAM AIP PROJECT NO. 3-30-0008-07

PHASE I EARTHWORK AND DRAINAGE

RUNWAY 7/25

VICINITY MAP

INDEX OF SHEETS

- COVER SHEET
1. KEY MAP.
2. QUANTITY SHEET
3. LOCATION OF EXPLORATION HOLES AND SEISMIC TRAVERSSES
4. LOGS OF EXPLORATION HOLES
5. SOIL PROFILES
6. R/W 7-25 PROFILE - 37.5' LT., C.L., 37.5' RT.
STA. -8+00 TO STA. 10+00
7. R/W 7-25 PROFILE - 75' LT. AND 75' RT.
STA. - 8+00 TO STA. 10+00
8. R/W 7-25 PROFILE - 37.5' LT., C.L., 37.5' RT.
STA. 10+00 TO STA. 35+00
9. R/W 7-25 PROFILE - 75' LT. AND 75' RT.
STA. 10+00 TO STA. 35+00
10. R/W 7-25 PROFILE - 37.5' LT., C.L., 37.5' RT.
STA. 35+00 TO STA. 59+35
11. R/W 7-25 PROFILE - 75' LT. AND 75' RT.
STA. 35+00 TO STA. 59+35
12. ACCESS T/W TO R/W 25 PROFILE
13. TYPICAL SECTION - RUNWAY AND TAXIWAY
14. RUNWAY EARTHWORK DETAILS
15. DUMP SITE CLEARING AREA
16. BORROW AREAS 1 AND 2

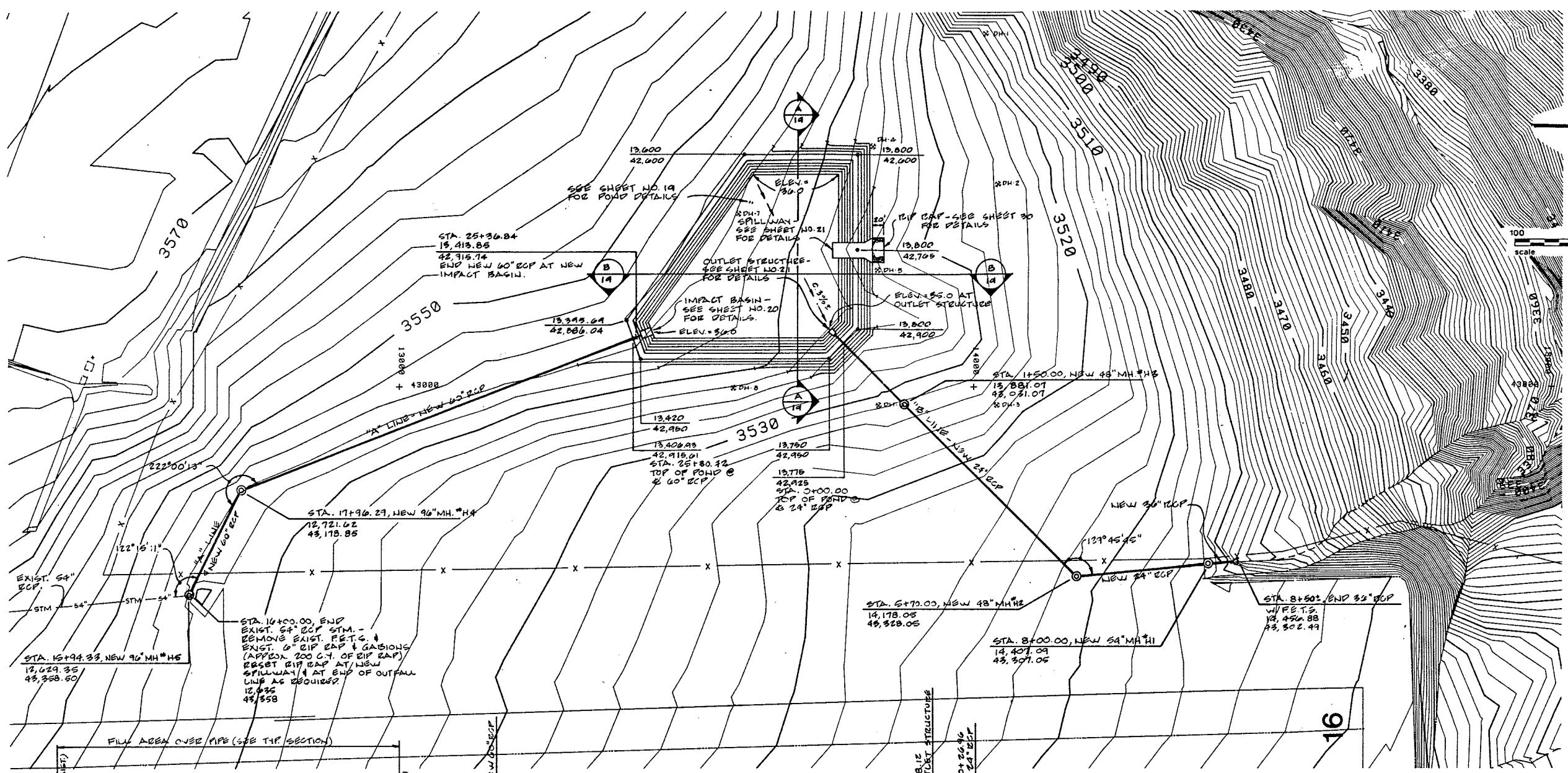
17. BORROW AREAS 3, 4, 5, 6 AND 7
R/W 4-22 PAVEMENT REMOVAL
18. POND "E" LAYOUT - INLET AND OUTLET PIPE PROFILES
19. POND "E" TYPICAL SECTION AND CROSS SECTION
20. IMPACT BASIN POND "E"
21. SPILLWAY AND OUTLET STRUCTURE
22. STRUCTURAL DETAILS POND "E"
23. STORM DRAIN NORTH OF R/W 27R
STA. 80+40.27 TO STA. 97+00
24. STORM DRAIN NORTH OF R/W 27R
STA. 97+00 TO STA. 108+31.55
25. STORM DRAIN R/W 7, SCHEDULE II
STA. 4+17.38 TO STA. 26+50
26. STORM DRAIN R/W 7, SCHEDULE IIA
STA. 4+17.38 TO STA. 26+50
27. STORM DRAIN R/W 7, SCHEDULE IIA
STA. 3+00 TO STA. 19+38.97
28. MISCELLANEOUS DETAILS (MANHOLE AND INLET DETAILS)
29. ELECTRICAL DUCT
30. MISCELLANEOUS DETAILS
31. HORIZONTAL AND VERTICAL CONTROL DATA
32. PAINT REMOVAL AND PAVEMENT MARKING

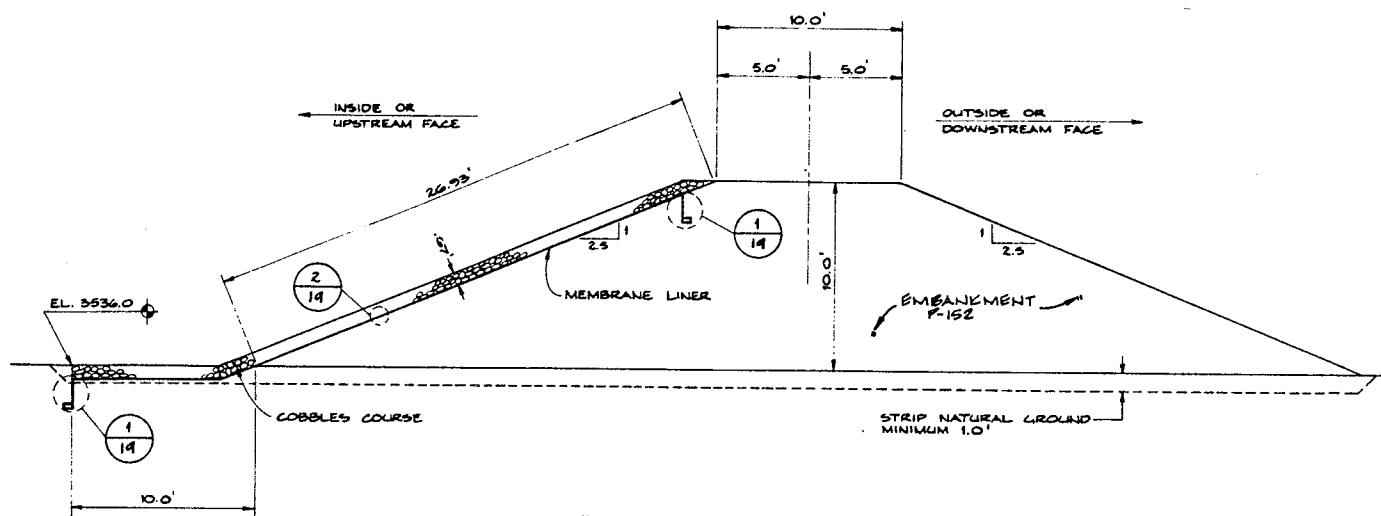
LEGEND

- NEW MANHOLE
- EXISTING INLET OR MANHOLE
- EXISTING RUNWAY OR TAXIWAY LIGHT
- TYPICAL BURIED UTILITY
- NEW STORM DRAIN
- 4450— EXISTING GROUND CONTOUR
- PROPOSED RUNWAY OR TAXIWAY CENTERLINE
- 150' SAFETY AREA CONSTRUCTION LIMIT
- 300' SAFETY AREA CONSTRUCTION LIMIT
- DUMP SITE BOUNDARY

John McMurtry
PRINCIPAL IN CHARGE

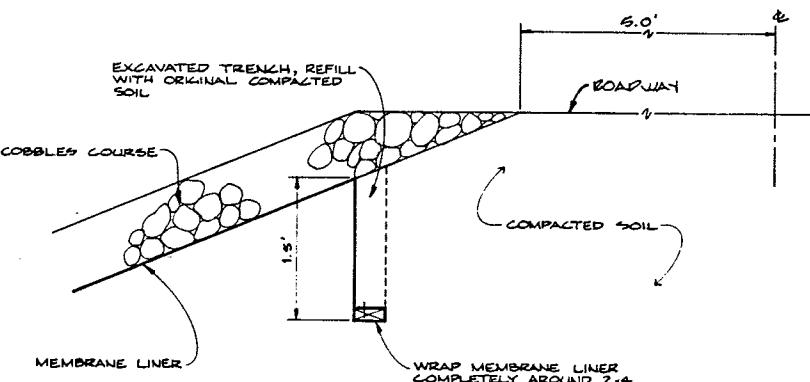
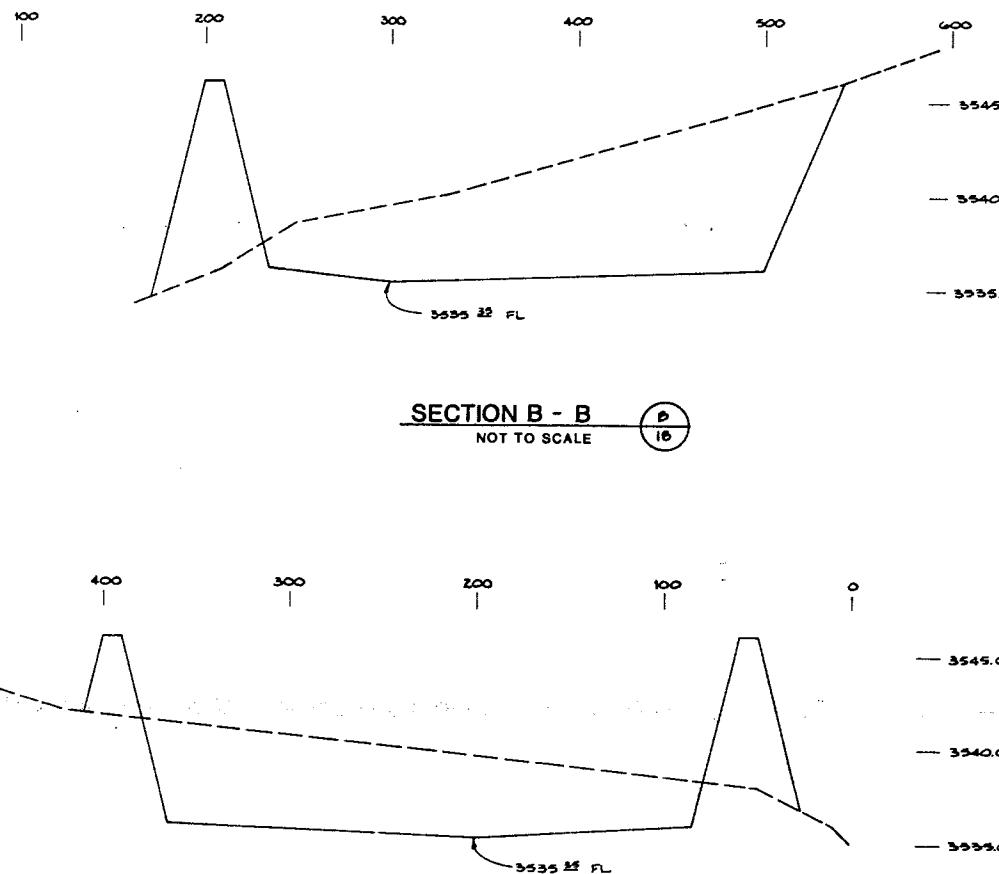
John McMurtry
PROJECT MANAGER

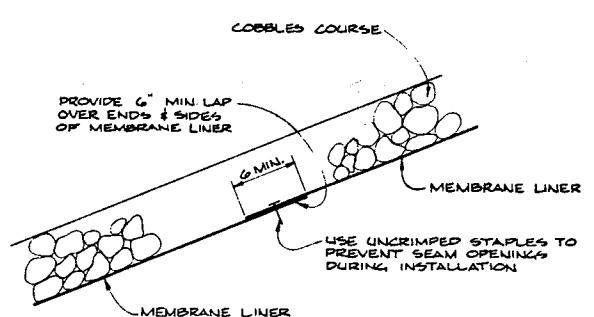

2M025.222
HKM JOB NO.


Legend 5.000
DATE

REDUCED PRINTS
APPROXIMATELY 1/2 SCALE

HKM ASSOCIATES
ENGINEERS • PLANNERS



Airport Industrial Park Branch Offices:
P.O. Box 31318 • Bozeman, Montana
Billings, Montana 59107 • Sheridan, Wyoming



TYPICAL DIKE LINING SECTION

NOT TO SCALE

DETAIL 1
NOT TO SCALE 14

DETAIL 2
NOT TO SCALE 14

HKA ASSOCIATES
ENGINEERS • PLANNERS
Branch Offices:
Airport Industrial Park • Libby, Montana
P.O. Box 31318 • Billings, Montana 59107 • Sheridan, Wyoming

Sheet No.
19
of 32

Project No. 2700000000	ID. No.	Date Drawn 1/20	Date Checked 1/20	Date Designed 1/20	Date Approved 1/20
No. Revision By Date					

LOGAN FIELD - AIP 07 PHASE I

POND "E" TYPICAL SECTION AND CROSS SECTION

POND "E" TYPICAL SECTION AND CROSS SECTION

HIKIM ASSOCIATES

ENGINEERS • PLANNERS

Branch Offices:
Libby, Montana •
Sheridan, Wyoming

LOGAN FIELD - AIP 07 PHASE I

Project No. 24020-2022

I.D. No.

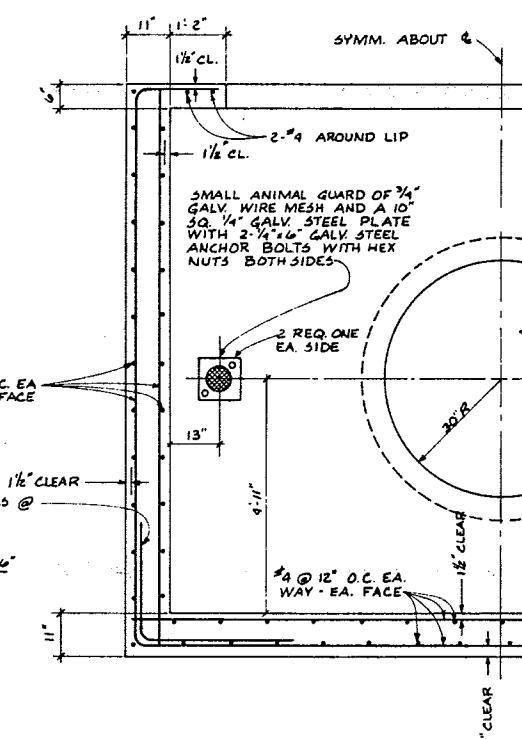
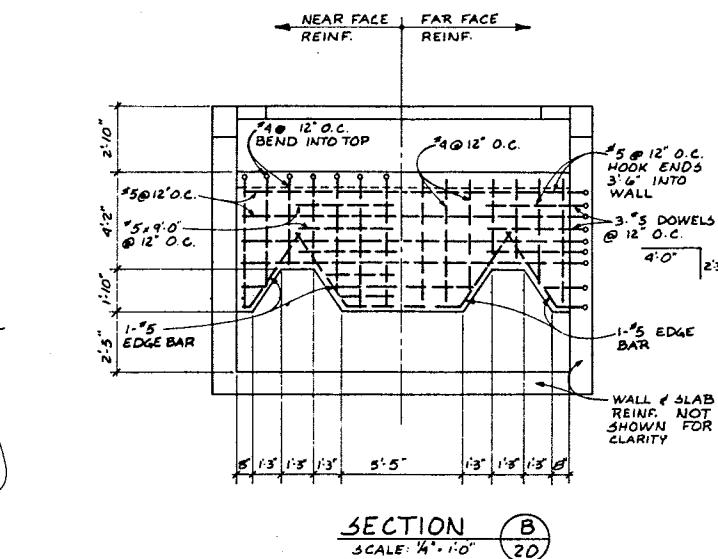
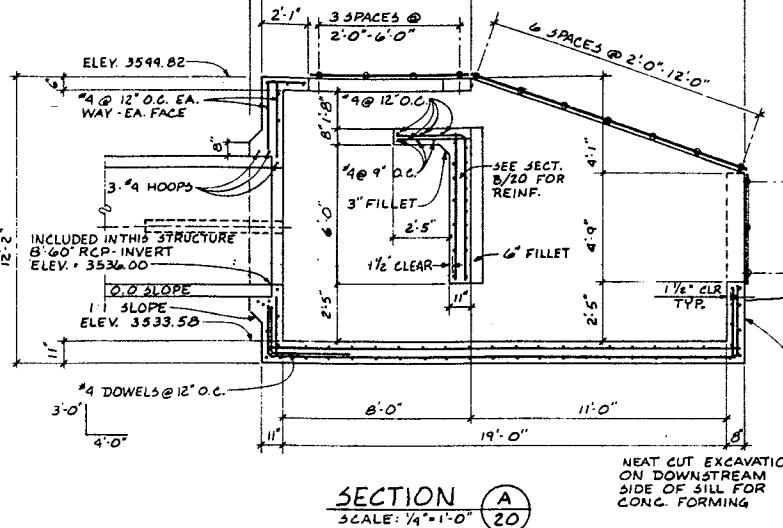
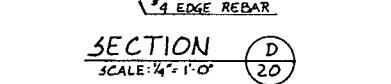
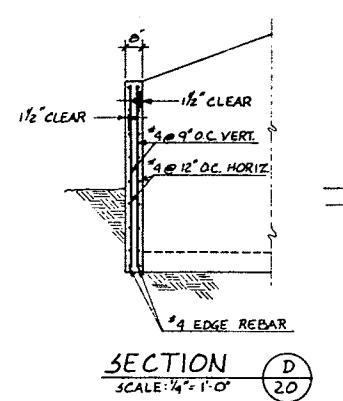
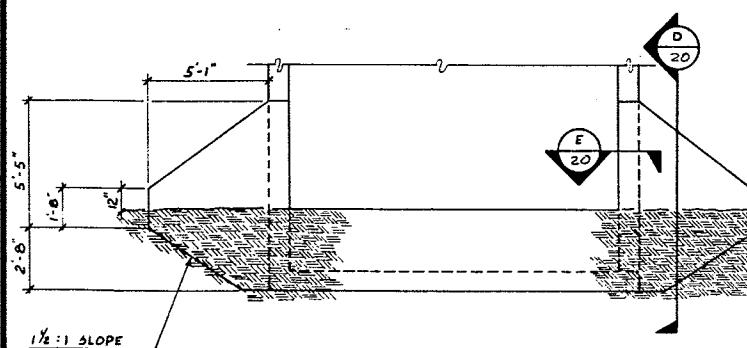
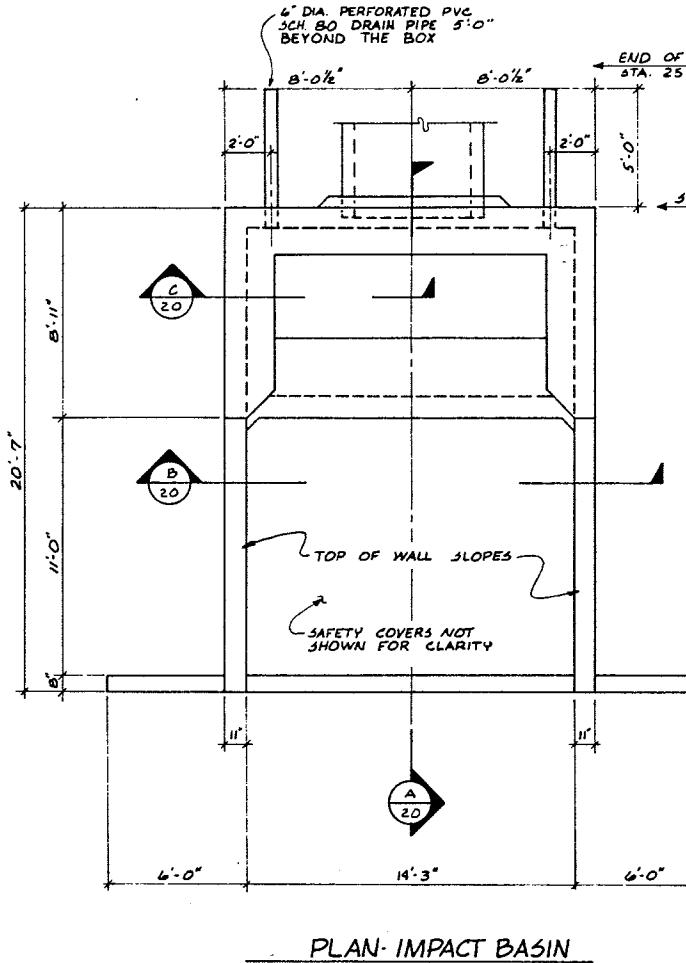
Date 10/4/1988

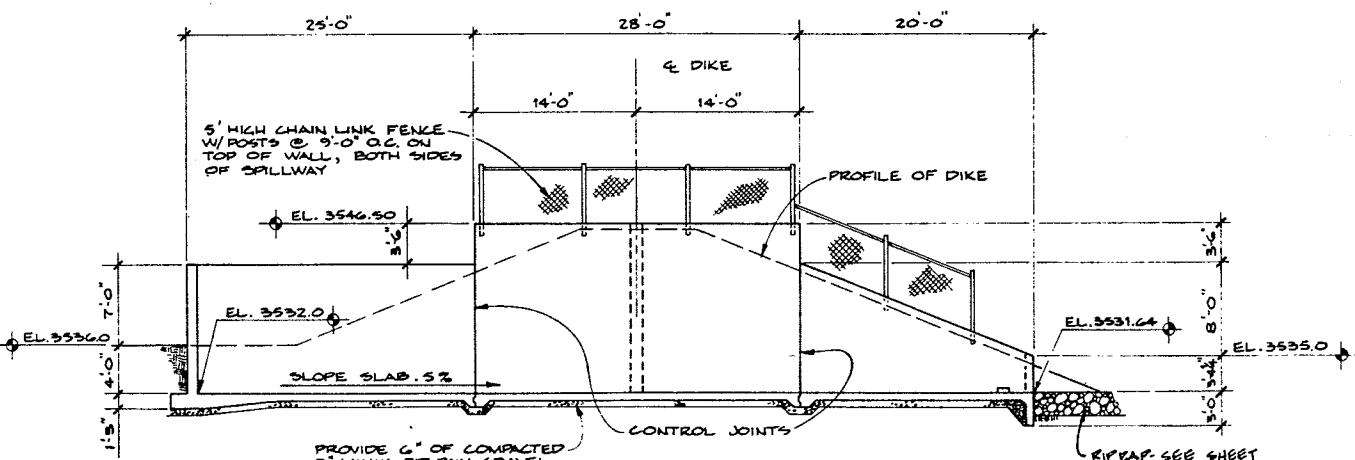
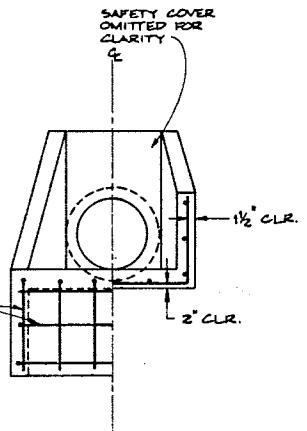
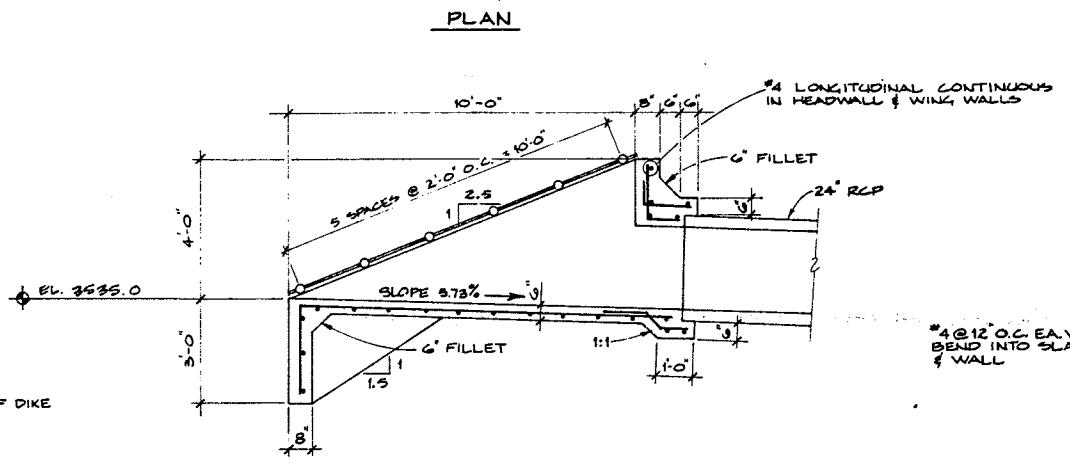
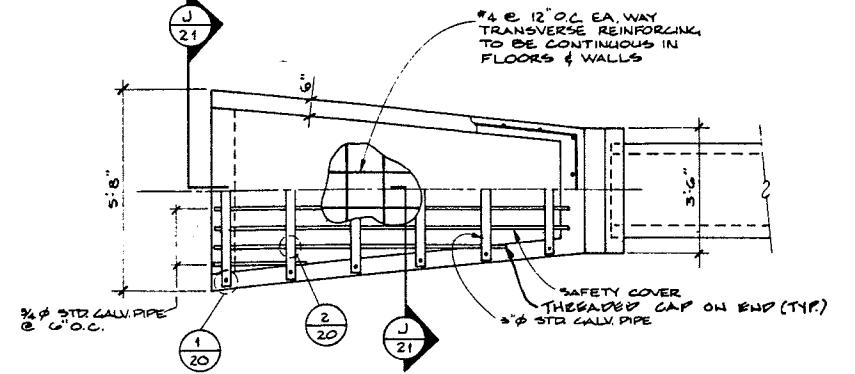
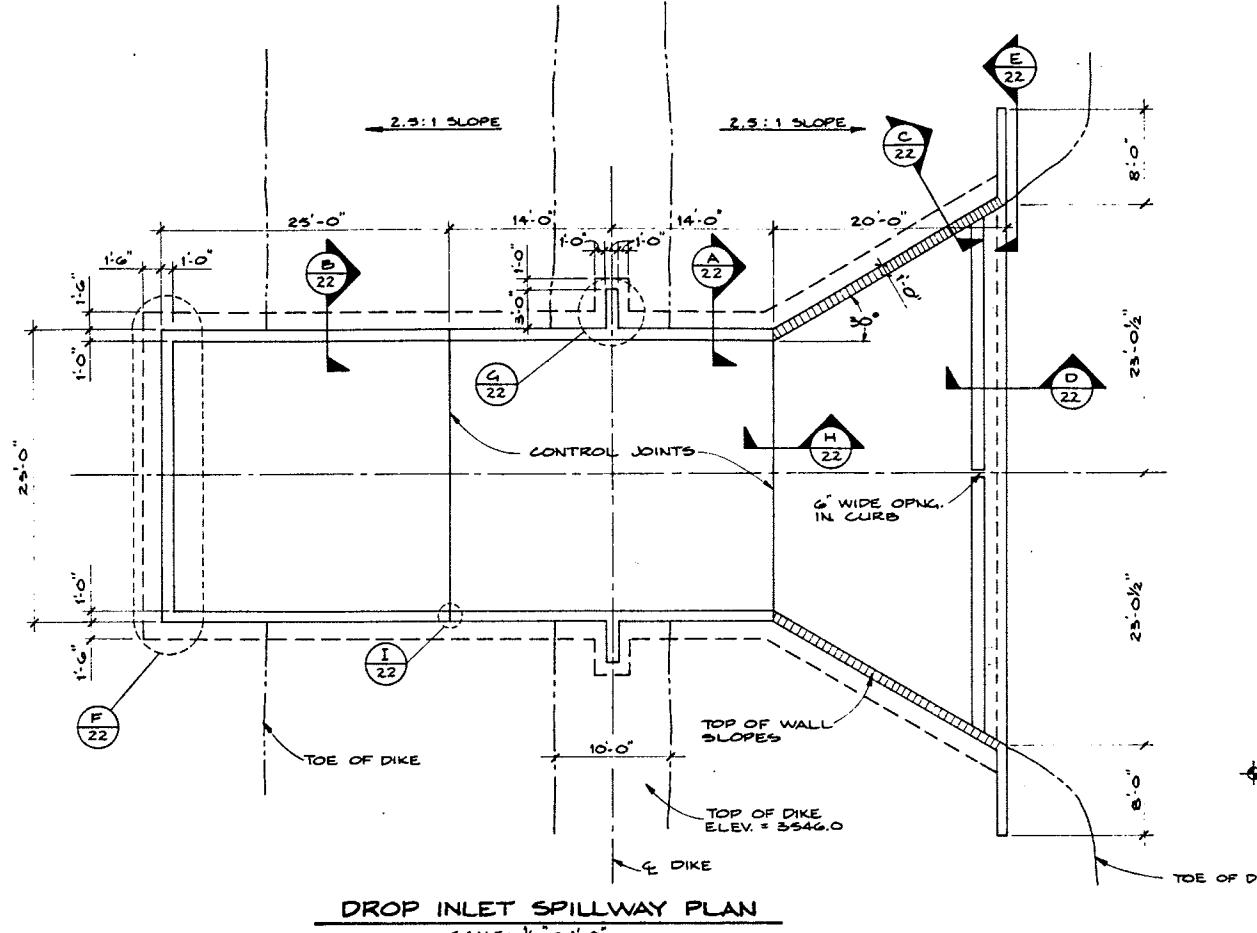
Designed by Drawn by Checked by Approved by

Project No. 24020-2022

No.

Revision








Date






By

Copyright © 1988 HIKIM Associates, All Rights Reserved

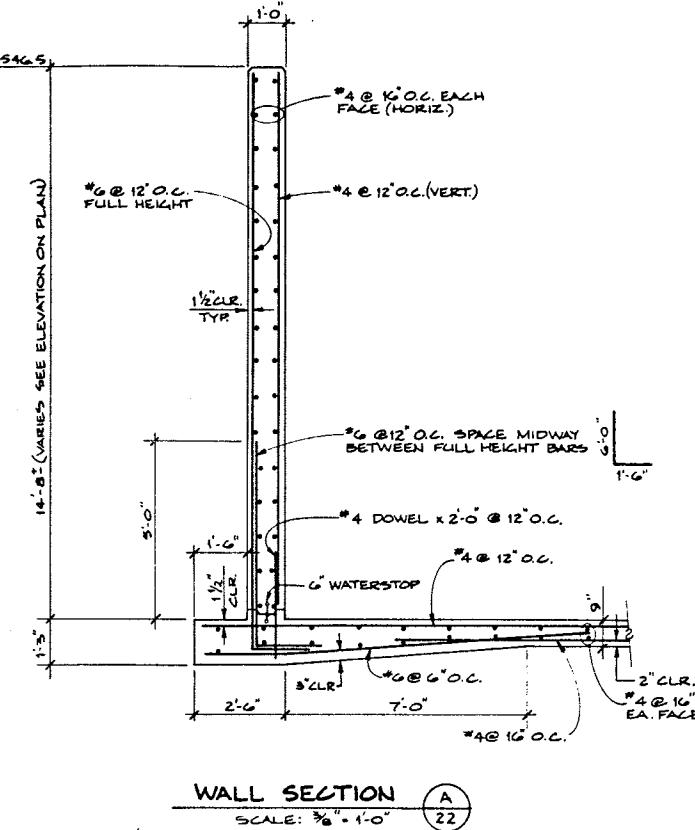
Sheet No.
20

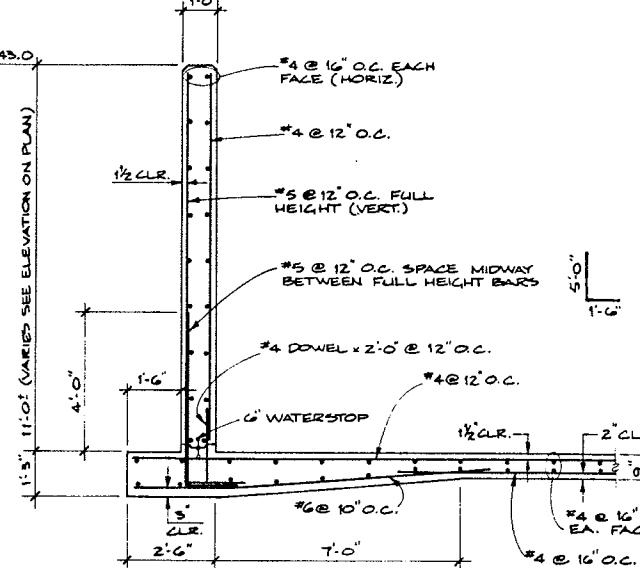
of
32

HIKM ASSOCIATES
ENGINEERS • PLANNERS

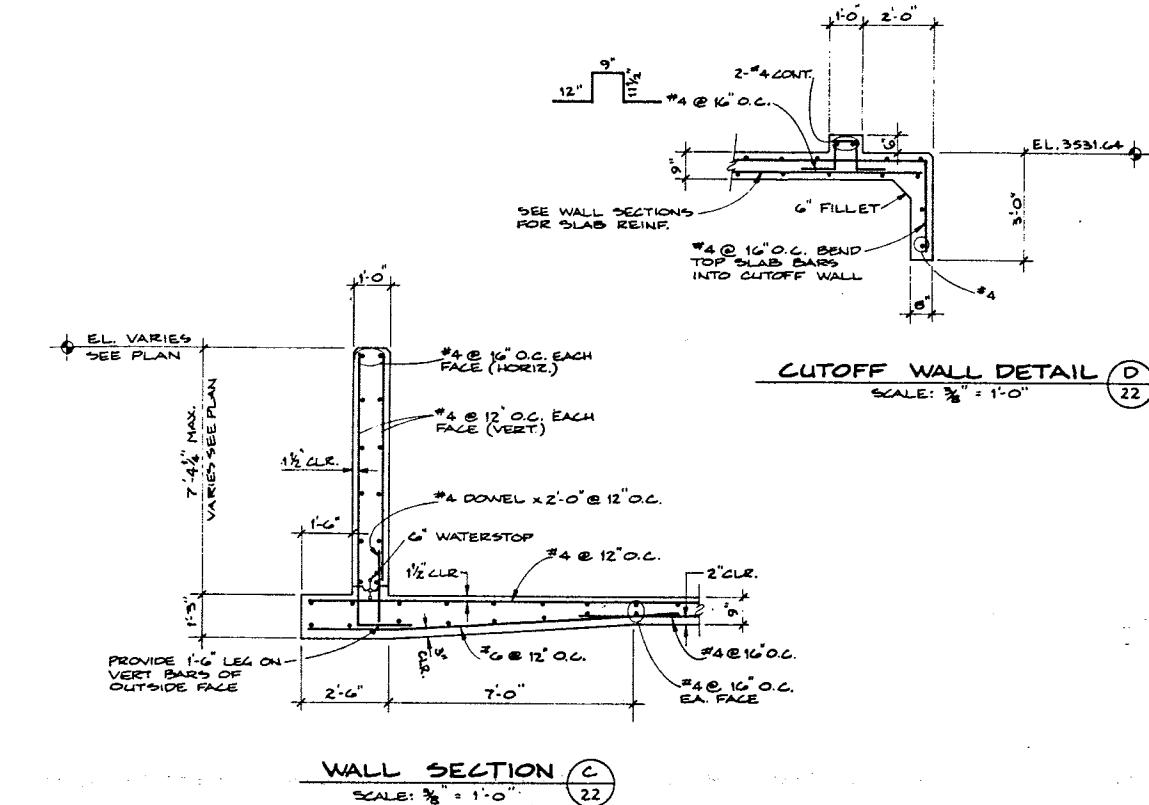
Branch Offices:
 • Libby, Montana
 • Sheridan, Wyoming

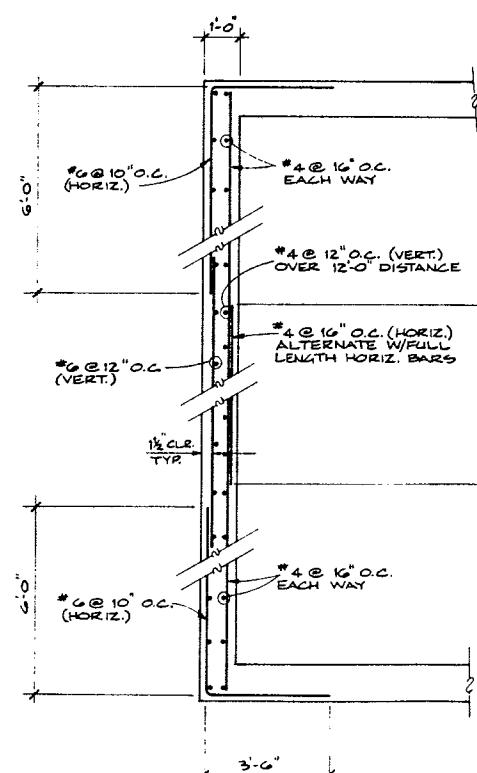
Project No. 2M022A-222	I.D. No.	Date 4-4-1988	Designed By <u>DK</u>	Drawn By <u>DK</u>	Checked By <u>DK</u>	Approved By <u>DK</u>
No. <u>1</u>		Revision <u>1</u>	Sheet No. <u>1</u>	By <u>DK</u>	Date <u>4-4-1988</u>	Approved <u>DK</u>

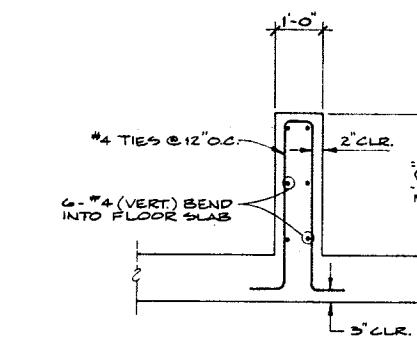

LOGAN FIELD - AIP 07 PHASE 1
SPILLWAY AND OUTLET STRUCTURE

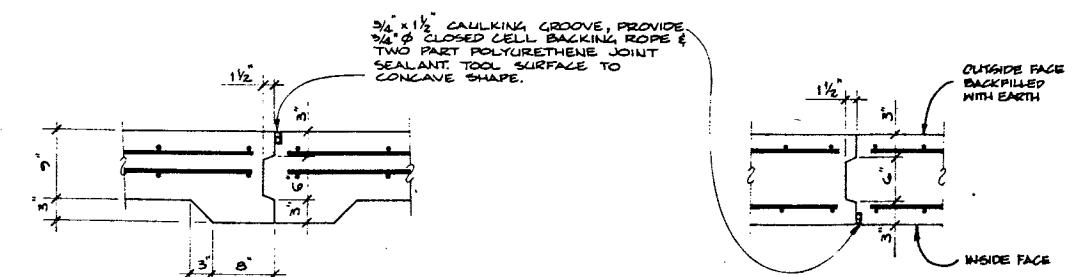

LOGAN FIELD – AIP 07 PHASE I

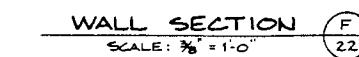
Branch Offices: Libby, Montana • Sheridan, Wyoming
Airport Industrial Park
P.O. Box 31318
Billings, Montana 59107


No.
2


WALL SECTION
SCALE: $\frac{3}{8}$ " = 1'-0" A
22


WALL SECTION


CUTOFF WALL DETAIL D


WING WALL ELEVATION

CURB DETAIL

WALL CONTROL JOINT I

FLOOR CONTROL JOINT H
SCALE: 1" = 1'-0" 22

APPENDIX C

Precipitation Data

TABLE 3.4

Intensity-Duration for Billings, Montana, City of
Billings Stormwater Management Manual

Table 3-4. Intensity-duration for Billings, Montana

Time	Intensity in Inches per Hour at Selected Recurrence Intervals						
	WQual	2-year	5-year	10-year	25-year	50-year	100-year
5 min	1.26	2.82	4.54	5.66	7.09	8.15	9.20
10 min	0.88	2.08	3.20	3.95	4.89	5.58	6.28
15 min	0.72	1.68	2.62	3.24	4.03	4.62	5.20
20 min	0.63	1.45	2.29	2.84	3.54	4.06	4.57
25 min	0.54	1.23	1.95	2.43	3.04	3.50	3.95
30 min	0.45	1.00	1.62	2.03	2.55	2.94	3.32
35 min	0.42	0.93	1.50	1.87	2.35	2.71	3.06
40 min	0.38	0.85	1.37	1.71	2.14	2.47	2.79
45 min	0.35	0.78	1.25	1.55	1.95	2.24	2.53
50 min	0.31	0.7	1.12	1.40	1.74	2.00	2.26
55 min	0.27	0.63	1.00	1.24	1.54	1.77	2.00
1 hr	0.24	0.55	0.87	1.08	1.34	1.54	1.73
1.25 hr	0.21	0.49	0.77	0.95	1.19	1.36	1.53
1.5 hr	0.18	0.44	0.68	0.83	1.03	1.18	1.32
1.75 hr	0.16	0.38	0.58	0.71	0.88	0.99	1.16
2 hr	0.13	0.32	0.48	0.58	0.72	0.81	0.91
2.5 hr	0.11	0.28	0.42	0.50	0.62	0.70	0.79
3 hr	0.09	0.23	0.35	0.42	0.52	0.59	0.66
6 hr	0.06	0.15	0.21	0.24	0.30	0.34	0.37
24 hr	0.021	0.060	0.079	0.092	0.113	0.126	0.141

Values from 5 minutes to 3 hours from –

Mark M. Peterson, A Statistical Analysis of Short-Duration Precipitation for Billings, Montana, Montana State University, Bozeman, Winter 1985.

Values from 6 hour and 24 hour from –

National Weather Service, NOAA Atlas 2, Precipitation – Frequency Atlas of the Western United States, Volume 1 – Montana, Silver Springs, Maryland, 1973.

Values from water quality are approximate and were derived from average difference obtained from 2 year through 100-year storms.

JUNE 20, 2010

Storm Data

SITE INFORMATION**ID: KBIL****NAME: Billings Logan International Airport****LATITUDE: 45.80694****LONGITUDE: -108.54222****ELEVATION: 3648 ft****MNET: NWS/FAA***(Click [for topo/terrain map](#))**(Click [for satellite](#))***SITE LINKS**[Help](#)[ROMAN](#)[Metric Units](#)[Greenwich Mean Time](#)[Past Data](#)[Station Information](#)[Restrictions](#)[Data in Spreadsheet Format](#)**DATA COURTESY OF**[National Weather Service](#)

Past Weather Conditions for KBIL

Observations prior to selected time: June 21, 2010 - 12:00 MDT

Weather Conditions at June 21, 2010 - 11:53 MDT

	11:53	24 Hour Max	24 Hour Min
Temperature	66.9° F	75.0 at 13:53	50.0 at 5:21
Dew Point	55.9° F	62.6 at 16:20	50.0 at 4:53
Relative Humidity	68%	100 at 16:27	54 at 13:53
Wind Speed	6 mph from N	30 at 16:33	0 at 21:53
Wind Gust	-	45 at 16:33	20 at 12:53
Pressure	26.18 in	26.28 at 23:53	26.13 at 15:59
Sea level pressure	29.86 in	29.98 at 23:53	29.81 at 15:59
Altimeter	29.92 in	30.04 at 23:53	29.86 at 15:59
Weather conditions	partly cloudy	-	-
Visibility	10.00 miles	10.00 at 12:53	0.25 at 4:42
Ceiling	-	10000 at 21:53	400 at 16:27

Precipitation variable accumulated	Since Midnight	In 24 Hours
Precipitation 1hr	0.00"	2.24"
Precipitation 6hr	0.00"	0.00"

Tabular Listing: June 20, 2010 - 11:00 through June 21, 2010 - 12:00 MDT

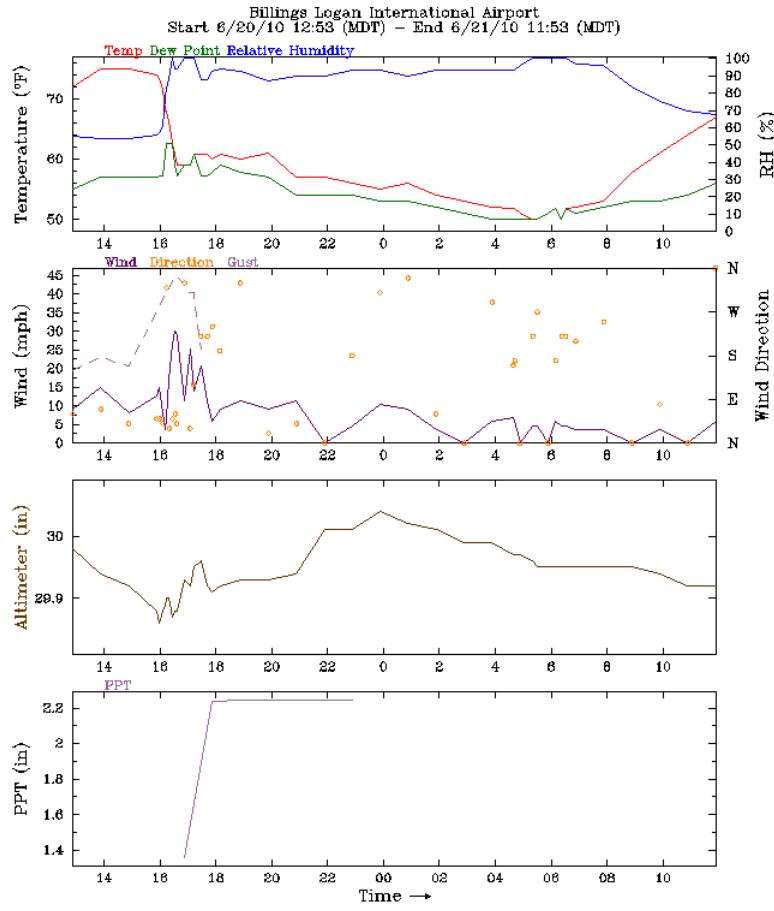
Time(MDT)	Temperature	Dew Point	Relative Humidity	Wind Speed	Wind Gust	Wind Direction	Quality check	Pressure in	Sea level pressure in	Altimeter in	Weather conditions	Visibility	Precipitation 1hr	Precipitation 3hr	Precipitation 6hr	Precipitation 24hr	Ceiling
												miles	in	in	in	feet	
11:53	66.9	55.9	68	6		N	OK	26.18	29.86	29.92	partly cloudy	10.00					
10:53	64.0	54.0	70	0			OK	26.18	29.87	29.92	partly cloudy	10.00					
9:53	61.0	53.1	75	3		E	OK	26.20	29.89	29.94	partly cloudy	10.00					
8:53	57.9	53.1	84	0			OK	26.21	29.91	29.95	partly cloudy	10.00					
7:53	53.1	52.0	96	3		WSW	OK	26.21	29.92	29.95	fog	10.00					
6:53	52.0	51.1	97	3		SSW	OK	26.21	29.91	29.95	fog	10.00					
6:31	51.8	51.8	100	5		SW	OK	26.21		29.95	fog	10.00					
6:23	50.0	50.0	100	5		SW	OK	26.21		29.95	fog	10.00					
6:10	51.8	51.8	100	6		S	OK	26.21		29.95	fog	0.50					
5:53	51.1	51.1	100	0			OK	26.21	29.92	29.95	fog	10.00					2.24
5:30	50.0	50.0	100	5		W	OK	26.21		29.95	partly cloudy	10.00					
5:21	50.0	50.0	100	5		SW	OK	26.21		29.96	fog	1.00					
4:53	51.1	50.0	96	0			OK	26.22	29.94	29.97	fog	0.50					
4:42	51.8	50.0	94	6		S	OK	26.22		29.97	fog	0.25					
4:39	51.8	50.0	94	7		SSE	OK	26.22		29.97	fog	1.00					
3:53	52.0	50.0	93	6		WNW	OK	26.24	29.93	29.99	mostly clear	10.00					
2:53	53.1	51.1	93	0			OK	26.24	29.93	29.99	clear	10.00					
1:53	54.0	52.0	93	3		ENE	OK	26.26	29.94	30.01	clear	10.00					
0:53	55.9	53.1	90	9		NNW	OK	26.27	29.96	30.02	clear	10.00					
23:53	55.0	53.1	93	10		NW	OK	26.28	29.98	30.04	mostly clear	10.00				0.00	
22:53	55.9	54.0	93	5		S	OK	26.26	29.96	30.01	mostly cloudy	10.00	0.00				8000
21:53	57.0	54.0	89	0			OK	26.26	29.96	30.01	lt rain	10.00	0.00				10000
20:53	57.0	54.0	89	12		NE	OK	26.20	29.89	29.94	partly cloudy	10.00				0.00	
19:53	61.0	57.0	87	9		NNE	OK	26.19	29.88	29.93	partly cloudy	10.00					
18:53	60.1	57.9	93	12		NNW	OK	26.19	29.89	29.93	partly cloudy	10.00	0.00				
18:09	60.8	59.0	94	9		S	OK	26.18		29.92	lt rain	10.00	0.00				7000
17:53	60.1	57.9	93	6		WSW	OK	26.17	29.88	29.91	lt rain thunder shwr	9.00	0.88				
17:42	60.8	57.2	88	12		SW	OK	26.18		29.92	mod thunder shwr	4.00	0.86				
17:28	60.8	57.2	88	21	25	SW	OK	26.21		29.96	lt rain thunder shwr	5.00	0.78				
17:12	60.8	60.8	100	14	40	ESE	OK	26.21		29.95	mod thunder shwr, fog	2.00	0.77				
17:05	59.0	59.0	100	25	40	NNE	OK	26.18		29.92	hvy rain thunder shwr, mod hail, fog	0.50	0.57				
16:53	59.0	59.0	100	12		NNW	OK	26.19	29.90	29.93	hvy rain thunder shwr, mod hail, fog	1.00	1.36				
16:36	59.0	57.2	94	29	45	NE	OK	26.14		29.88	hvy rain thunder shwr, mod hail, fog	1.25	0.84				
16:33	60.8	59.0	94	30	45	ENE	OK	26.14		29.88	hvy rain thunder shwr, mod hail, fog	0.75	0.79				
16:27	62.6	62.6	100	26		NE	OK	26.14		29.87	hvy rain thunder shwr, mod hail, fog	0.50	0.64				
16:20	66.2	62.6	88	17		NNE	OK	26.16		29.90	hvy rain thunder shwr, mod hail, fog	1.50	0.34				
16:14	68.0	62.6	83	7		NW	OK	26.16		29.90	hvy rain thunder shwr, mod hail, mod rain	3.00	0.16				
16:11	68.0	60.8	78	3			OK	26.15		29.89	thunder, mod hail, mod rain	1.75	0.09				
16:06	71.6	57.2	61	8		NE	OK	26.14		29.88	thunder, mod hail, mod rain	7.00	0.01				
15:59	73.4	57.2	57	15		NE	OK	26.13		29.86	thunder	10.00					
15:53	73.9	57.0	56	13		NE	OK	26.14	29.81	29.88	mostly cloudy	10.00					
14:53	75.0	57.0	54	8	21	NE	OK	26.18	29.84	29.92	mostly cloudy	10.00					
13:53	75.0	57.0	54	15	23	ENE	OK	26.20	29.86	29.94	partly cloudy	10.00					
12:53	72.0	55.0	55	9	20	ENE	OK	26.23	29.91	29.98	partly cloudy	10.00					
11:53	70.0	53.1	55	9		NE	OK	26.24	29.93	29.99	mostly clear	10.00					

MesoWest Webmaster, [NWS Western Region Headquarters Webmaster](#)

US Dept of Commerce

National Oceanic and Atmospheric Administration

National Weather Service


Freedom of Information Act

USA.gov

[Disclaimer](#)[Credits](#)[Glossary](#)[Privacy Policy](#)[About Us](#)

 [NWS](#) [ALL NOAA](#)
Developed by [MesoWest](#) at the [University of Utah](#)

Select Previous Periods: [12 Hours](#) [24 Hours](#) [2 Days](#) [5 Days](#) [7 Days](#) [10 Days](#) [30 Days](#)

[Hodograph](#)

[MesoWest Webmaster](#), [NWS Western Region Headquarters Webmaster](#)

[US Dept of Commerce](#)

[National Oceanic and Atmospheric Administration](#)

[National Weather Service](#)

[Freedom of Information Act](#)

[USA.gov](#)

Western Region Headquarters
125 South State Street
Salt Lake City, UT 84103

[Disclaimer](#)

[Credits](#)

[Glossary](#)

[Privacy Policy](#)

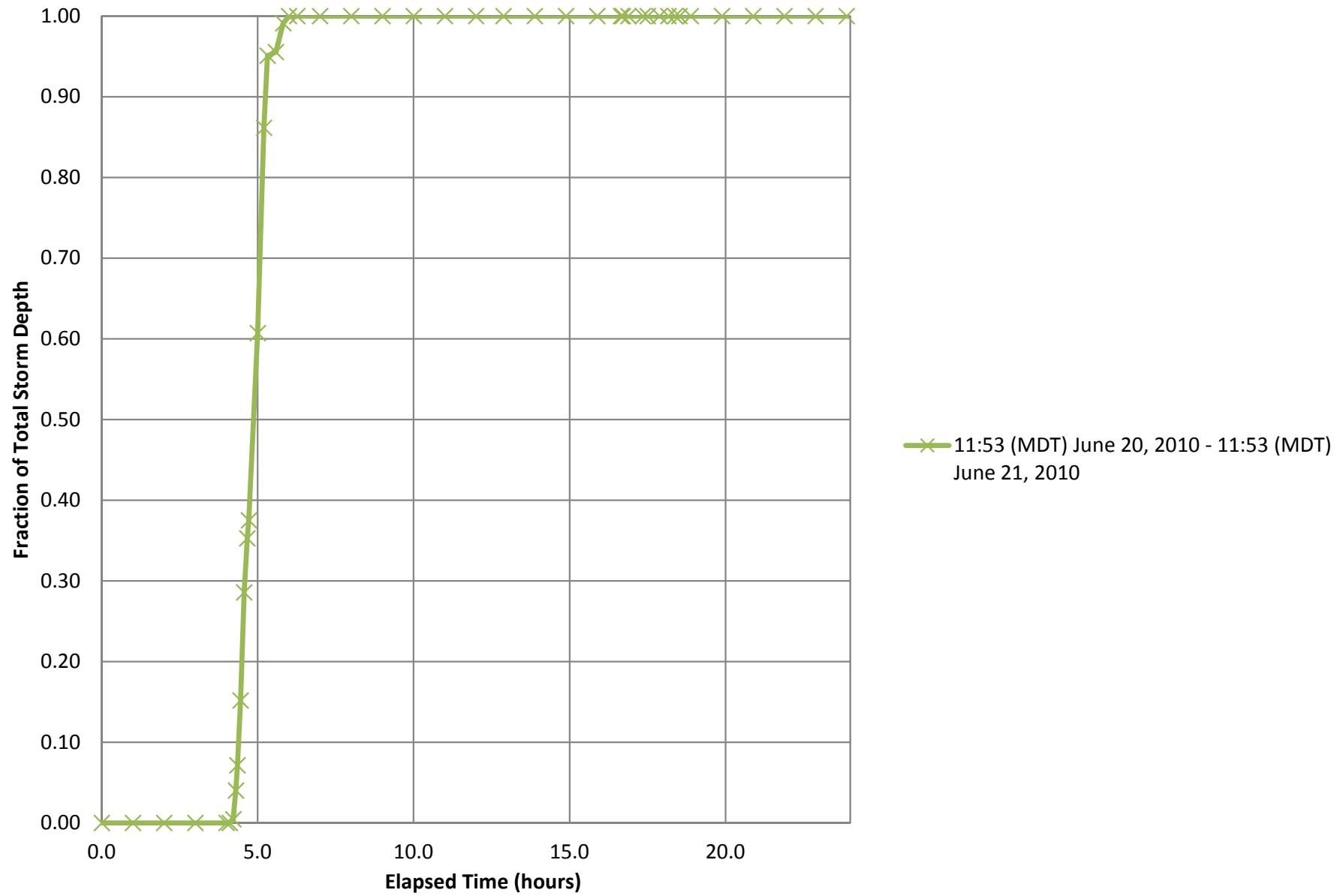
[About Us](#)

[NWS](#) [ALL NOAA](#)

Developed by [MesoWest](#) at the [University of Utah](#)

Support provided by the [US Forest Service](#)

June 2010 Storm Data


11:53 (MDT) June 20, 2010 - 11:53 (MDT) June 21, 2010

Billings Logan International Airport

NWS Time Readings (MDT)	Elapsed Time (hours)	NWS Precipitation				Fraction of Total Storm Depth
		Accumulated Per 1 hour (in.)	Incremental Precipitation (inches)	Accumulated Precipitation (inches)		
11:53	0.0	0.00	0.00	0.00		0.00
12:53	1.0	0.00	0.00	0.00		0.00
13:53	2.0	0.00	0.00	0.00		0.00
14:53	3.0	0.00	0.00	0.00		0.00
15:53	4.0	0.00	0.00	0.00		0.00
15:59	4.1	0.00	0.00	0.00		0.00
16:06	4.2	0.01	0.01	0.01		0.00
16:11	4.3	0.09	0.08	0.09		0.04
16:14	4.4	0.16	0.07	0.16		0.07
16:20	4.5	0.34	0.18	0.34		0.15
16:27	4.6	0.64	0.30	0.64		0.29
16:33	4.7	0.79	0.15	0.79		0.35
16:36	4.7	0.84	0.05	0.84		0.38
16:53	5.0	1.36	0.52	1.36		0.61
17:05	5.2	0.57	0.57	1.93		0.86
17:12	5.3	0.77	0.20	2.13		0.95
17:28	5.6	0.78	0.01	2.14		0.96
17:42	5.8	0.86	0.08	2.22		0.99
17:53	6.0	0.88	0.02	2.24		1.00
18:09	6.3	0.00	0.00	2.24		1.00
18:53	7.0	0.00	0.00	2.24		1.00
19:53	8.0	0.00	0.00	2.24		1.00
20:53	9.0	0.00	0.00	2.24		1.00
21:53	10.0	0.00	0.00	2.24		1.00
22:53	11.0	0.00	0.00	2.24		1.00
23:53	12.0	0.00	0.00	2.24		1.00
0:53	12.9	0.00	0.00	2.24		1.00
1:53	13.9	0.00	0.00	2.24		1.00
2:53	14.9	0.00	0.00	2.24		1.00
3:53	15.9	0.00	0.00	2.24		1.00
4:39	16.7	0.00	0.00	2.24		1.00
4:42	16.7	0.00	0.00	2.24		1.00
4:53	16.9	0.00	0.00	2.24		1.00
5:21	17.4	0.00	0.00	2.24		1.00
5:30	17.5	0.00	0.00	2.24		1.00
5:53	17.9	0.00	0.00	2.24		1.00

NWS Time Readings (MDT)	Elapsed Time (hours)	NWS Precipitation				Fraction of Total Storm Depth
		Readings	Accumulated	Incremental Precipitation (inches)	Accumulated Precipitation (inches)	
6:10	18.2	0.00	0.00	0.00	2.24	1.00
6:23	18.4	0.00	0.00	0.00	2.24	1.00
6:31	18.5	0.00	0.00	0.00	2.24	1.00
6:53	18.9	0.00	0.00	0.00	2.24	1.00
7:53	19.9	0.00	0.00	0.00	2.24	1.00
8:53	20.9	0.00	0.00	0.00	2.24	1.00
9:53	21.9	0.00	0.00	0.00	2.24	1.00
10:53	22.9	0.00	0.00	0.00	2.24	1.00
11:53	23.9	0.00	0.00	0.00	2.24	1.00
				<hr/>		
				2.24		

Rainfall Depth vs. Time for June 20, 2010 Storm

MAY 24, 2011

Storm Data

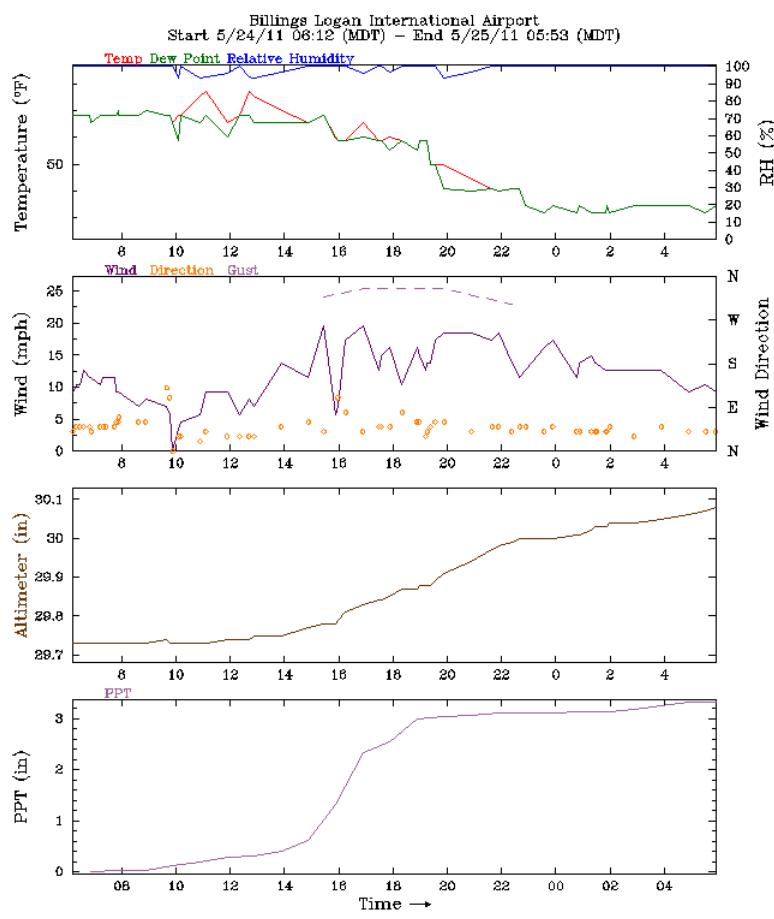
SITE INFORMATION**ID: KBIL****NAME: Billings Logan International Airport****LATITUDE: 45.80694****LONGITUDE: -108.54222****ELEVATION: 3648 ft****MNET: NWS/FAA***(Click [for topo/terrain map](#))**(Click [for satellite](#))***SITE LINKS**[Help](#)[ROMAN](#)[Metric Units](#)[Greenwich Mean Time](#)[Past Data](#)[Station Information](#)[Restrictions](#)[Data in Spreadsheet Format](#)**DATA COURTESY OF**[National Weather Service](#)

Past Weather Conditions for KBIL

Observations prior to selected time: May 25, 2011 - 06:00 MDT

Weather Conditions at May 25, 2011 - 5:53 MDT

	5:53	24 Hour Max	24 Hour Min
Temperature	46.9° F	55.4 at 11:06	46.4 at 23:34
Dew Point	46.9° F	54.0 at 7:53	46.4 at 23:34
Relative Humidity	100%	100 at 6:12	93 at 10:53
Wind Speed	9 mph from NE	20 at 15:27	0 at 9:53
Wind Gust	-	25 at 16:53	23 at 22:22
Pressure	26.32 in	26.32 at 5:53	26.01 at 6:12
Sea level pressure	30.07 in	30.07 at 5:53	29.68 at 7:53
Altimeter	30.08 in	30.08 at 5:53	29.73 at 6:12
Weather conditions	lt rain, fog	-	-
Visibility	0.50 miles	10.00 at 19:53	0.25 at 1:50
Ceiling	100 feet	3100 at 10:53	100 at 22:40


Precipitation variable accumulated	Since Midnight	In 24 Hours
Precipitation 1hr	0.21"	3.32"
Precipitation 6hr	0.00"	2.55"

Tabular Listing: May 24, 2011 - 5:00 through May 25, 2011 - 06:00 MDT

Time(MDT)	Temperature	Dew	Relative	Wind	Wind	Wind	Quality	Pressure	Sea level	Altimeter	Weather	conditions	Visibility	Precipitation	Precipitation	Precipitation	Precipitation	Ceiling										
													Point	Humidity	Speed	Gust	Direction	check	in	in	in	miles	1hr	3hr	6hr	24hr	feet	
5:53	46.9	46.9	100	9	NE	OK	26.32	30.07	30.08	It rain, fog	0.50	0.01	3.32	100														
5:31	46.4	46.4	100	10	NE	OK	26.31		30.07	fog	0.75	0.01		100														
4:53	46.9	46.9	100	9	NE	OK	26.30	30.06	30.06	It rain, fog	1.00	0.06		100														
3:53	46.9	46.9	100	13	NE	OK	26.29	30.05	30.05	It rain, fog	1.00	0.07																
2:53	46.9	46.9	100	13	NNE	OK	26.28	30.03	30.04	It rain, fog	0.50	0.06																
1:59	46.4	46.4	100	13	NE	OK	26.28		30.04	It rain, fog	0.50	0.00																
1:53	46.9	46.9	100	13	NE	OK	26.28	30.03	30.03	It rain, fog	0.25	0.00																
1:50	46.4	46.4	100	13	NE	OK	26.28		30.03	It rain, fog	0.25	0.00																
1:30	46.4	46.4	100	14	NE	OK	26.28		30.03	It rain, fog	0.75	0.00	100															
1:27	46.4	46.4	100	14	NE	OK	26.28		30.03	It rain, fog	1.50	0.00	100															
1:18	46.4	46.4	100	15	NE	OK	26.27		30.02	It rain	7.00	0.00	100															
0:53	46.9	46.9	100	14	NE	OK	26.26	30.00	30.01	It rain, fog	0.50	0.01	100															
0:46	46.4	46.4	100	12	NE	OK	26.26		30.01	It rain, fog	0.50	0.01	100															
23:53	46.9	46.9	100	17	NE	OK	26.25	30.00	30.00	It rain, fog	1.00	0.00	100															
23:34	46.4	46.4	100	16	NE	OK	26.25		30.00	It rain, fog	2.00	0.00	100															
22:53	46.9	46.9	100	13	NE	OK	26.25	30.00	30.00	It rain, fog	1.00	0.01	100															
22:40	48.2	48.2	100	12	NE	OK	26.25		30.00	It rain, fog	1.00	0.01	100															
22:22	48.2	48.2	100	14	23	NE	OK	26.24	29.99	fog	1.00	0.00	200															
21:53	48.0	48.0	100	18	NE	OK	26.23	29.97	29.98	mod rain, fog	2.00	0.05	200															
21:39	48.2	48.2	100	17	NE	OK	26.22		29.97	It rain, fog	1.25	0.02	200															
20:53	48.9	48.0	97	18	NE	OK	26.20	29.92	29.94	It rain, fog	2.00	0.01	0.50	200														
19:53	50.0	48.2	94	18	25	ENE	OK	26.17	29.89	29.91	overcast	10.00	0.04	200														
19:33	50.0	50.0	100	17	ENE	OK	26.15		29.89	It rain	9.00	0.04	200															
19:23	50.0	50.0	100	14	NE	OK	26.14		29.88	It rain, fog	5.00	0.03	600															
19:16	51.8	51.8	100	14	NE	OK	26.14		29.88	It rain, fog	1.00	0.03	400															
19:12	51.8	51.8	100	13	NNE	OK	26.14		29.88	It rain, fog	4.00	0.03	400															
18:58	51.8	51.8	100	15	ENE	OK	26.14		29.88	mod rain, fog	4.00	0.00	1400															
18:53	51.1	51.1	100	16	ENE	OK	26.14	29.86	29.87	mod rain, fog	2.00	0.45	1200															
18:20	51.8	51.8	100	10	E	OK	26.14		29.87	hvy rain, fog	2.00	0.11	400															
17:53	52.0	51.1	97	16	NE	OK	26.12	29.83	29.85	It rain	9.00	0.21	2.28	400														
17:34	51.8	51.8	100	15	NE	OK	26.11		29.84	mod rain, fog	5.00	0.19	400															
17:29	51.8	51.8	100	13	NE	OK	26.11		29.84	It rain, fog	2.00	0.18	800															
16:53	53.1	52.0	96	20	25	NE	OK	26.10	29.80	29.83	hvy rain, fog	2.00	1.02	2000														
16:15	51.8	51.8	100	17	E	OK	26.08		29.81	hvy rain, fog	2.00	0.67	2300															
15:58	51.8	51.8	100	7	ESE	OK	26.07		29.79	hvy rain, fog	2.00	0.28	600															
15:53	52.0	52.0	100	6	OK		26.06	29.75	29.78	hvy rain, fog	1.00	0.71	800															
15:27	53.6	53.6	100	20	24	NE	OK	26.06		29.78	hvy rain, fog	2.00	0.12	900														
14:53	53.1	53.1	100	12	ENE	OK	26.05	29.75	29.77	It rain, fog	6.00	0.22	1500															
13:53	54.0	53.1	97	14	NE	OK	26.03	29.72	29.75	It rain	7.00	0.09	2300															
12:53	55.0	53.1	93	7	NNE	OK	26.03	29.71	29.75	overcast	9.00	0.03	2100															
12:41	55.4	53.6	94	8	NNE	OK	26.02		29.74	overcast	9.00	0.03	1500															
12:21	53.6	53.6	100	6	NNE	OK	26.02		29.74	It rain	8.00	0.03	3100															
11:53	53.1	52.0	96	9	NNE	OK	26.02	29.72	29.74	mod rain, fog	5.00	0.09	0.27	800														
11:06	55.4	53.6	94	9	NE	OK	26.01		29.73	It rain	8.00	0.00	600															
10:53	55.0	53.1	93	6	NNE	OK	26.01	29.69	29.73	It rain	9.00	0.07	3100															
10:11	53.6	53.6	100	5	NNE	OK	26.01		29.73	It rain	8.00	0.06	3000															
10:06	53.6	51.8	94	3	NNE	OK	26.01		29.73	mod rain, fog	5.00	0.05	1400															
9:53	53.1	53.1	100	0	OK		26.01	29.69	29.73	mod rain, fog	3.00	0.09	400															
9:46	53.6	53.6	100	6	ESE	OK	26.01		29.73	mod rain, fog	3.00	0.07	400															
9:40	53.6	53.6	100	7	SE	OK	26.02		29.74	mod rain, fog	2.00	0.05	400															
8:53	54.0	54.0	100	8	ENE	OK	26.01	29.69	29.73	overcast	7.00	0.00	300															
8:37	53.6	53.6	100	7	ENE	OK	26.0																					

7:48	53.6	53.6	100	9	ENE	OK	26.01	29.73	fog	3.00	0.02	400	MesoWest Webmaster	
7:44	53.6	53.6	100	12	NE	OK	26.01	29.73	fog	1.00	0.01	200	NWS Western Region Head	
7:25	53.6	53.6	100	12	NE	OK	26.01	29.73	lt rain, fog	0.50	0.01	200	US Dept of Commerce	
7:19	53.6	53.6	100	12	NE	OK	26.01	29.73	lt rain, fog	0.50	0.01	200	National Oceanic and Atmospheric Administration	
7:12	53.6	53.6	100	10	NE	OK	26.01	29.73	lt rain, fog	0.50	0.00	200	National Weather Service	
6:53	53.1	53.1	100	12	NE	OK	26.01	29.69	29.73	lt rain, fog	1.00	0.00	200	Freedom of Information Act
6:49	53.6	53.6	100	12	NE	OK	26.01	29.73	lt rain, fog	1.00	0.00	200	USA.gov	
6:36	53.6	53.6	100	13	NE	OK	26.01	29.73	lt rain, fog	0.50	0.00	200	Western Region Headquarters	
6:27	53.6	53.6	100	10	NE	OK	26.01	29.73	fog	0.50		200	125 South State Street	
6:19	53.6	53.6	100	10	NE	OK	26.01	29.73	fog	0.75		200	Salt Lake City, UT 84103	
6:12	53.6	53.6	100	9	NE	OK	26.01	29.73	fog	1.00		200	Developed by MesoWest at the University of Utah	
5:53	53.1	52.0	96	8	NE	OK	26.01	29.68	29.73	fog	6.00	0.00	0.03	Support provided by the US Forest Service
5:30	53.6	51.8	94	7	NNE	OK	26.00	29.72	overcast	7.00	0.00	300		
5:10	53.6	53.6	100	6	N	OK	26.00	29.72	lt rain, fog	5.00	0.00	2000		

Select Previous Periods: [12 Hours](#) [24 Hours](#) [2 Days](#) [5 Days](#) [7 Days](#) [10 Days](#) [30 Days](#)
[Hodograph](#)

[MesoWest Webmaster](#), [NWS Western Region Headquarters Webmaster](#)

[US Dept of Commerce](#)

[National Oceanic and Atmospheric Administration](#)

[National Weather Service](#)

[Freedom of Information Act](#)

[USA.gov](#)

Western Region Headquarters
125 South State Street
Salt Lake City, UT 84103

[Disclaimer](#)

[Credits](#)

[Glossary](#)

[Privacy Policy](#)

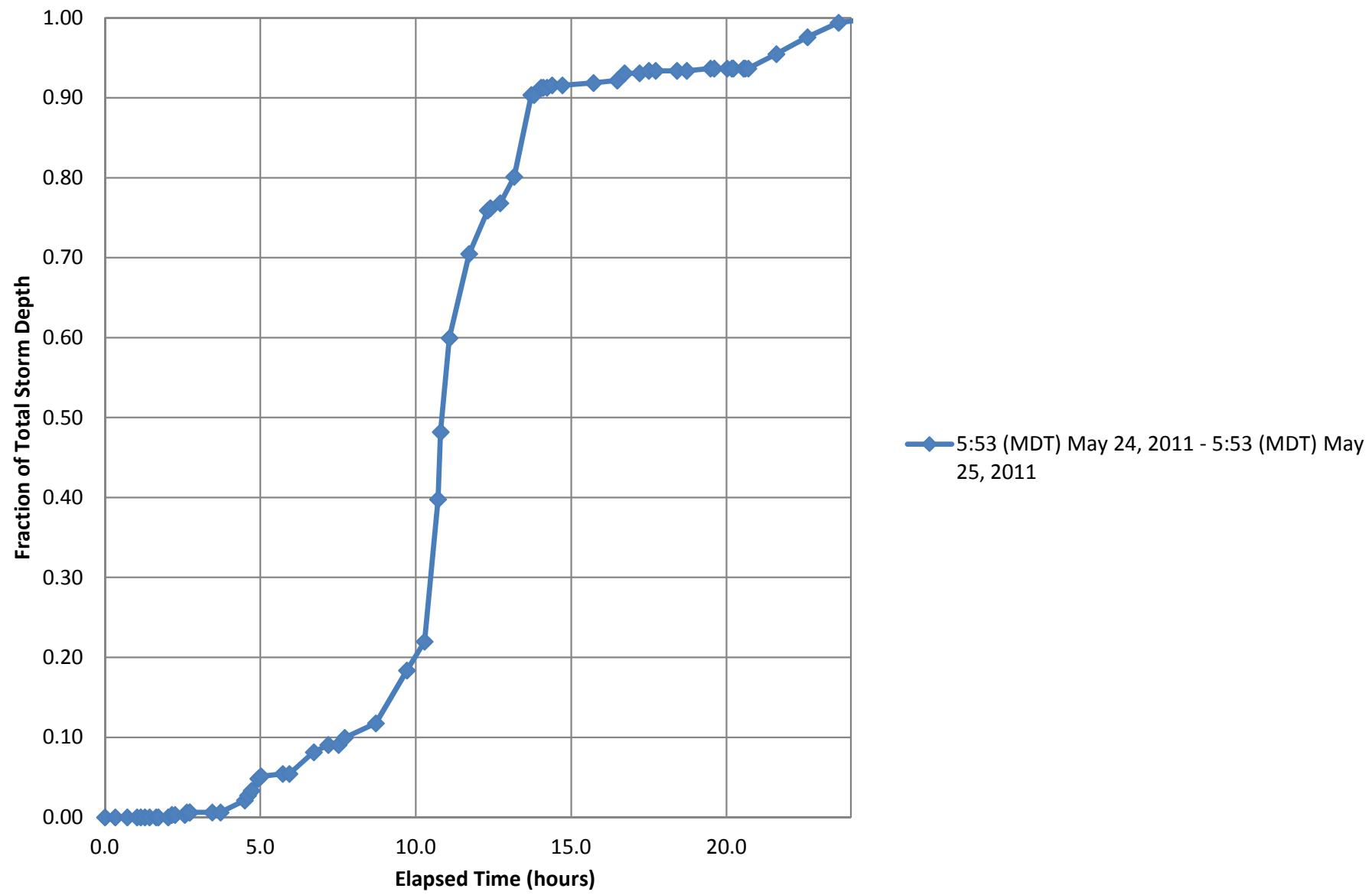
[About Us](#)

 [NWS](#) [ALL NOAA](#)

Developed by [MesoWest](#) at the [University of Utah](#)

Support provided by the [US Forest Service](#)

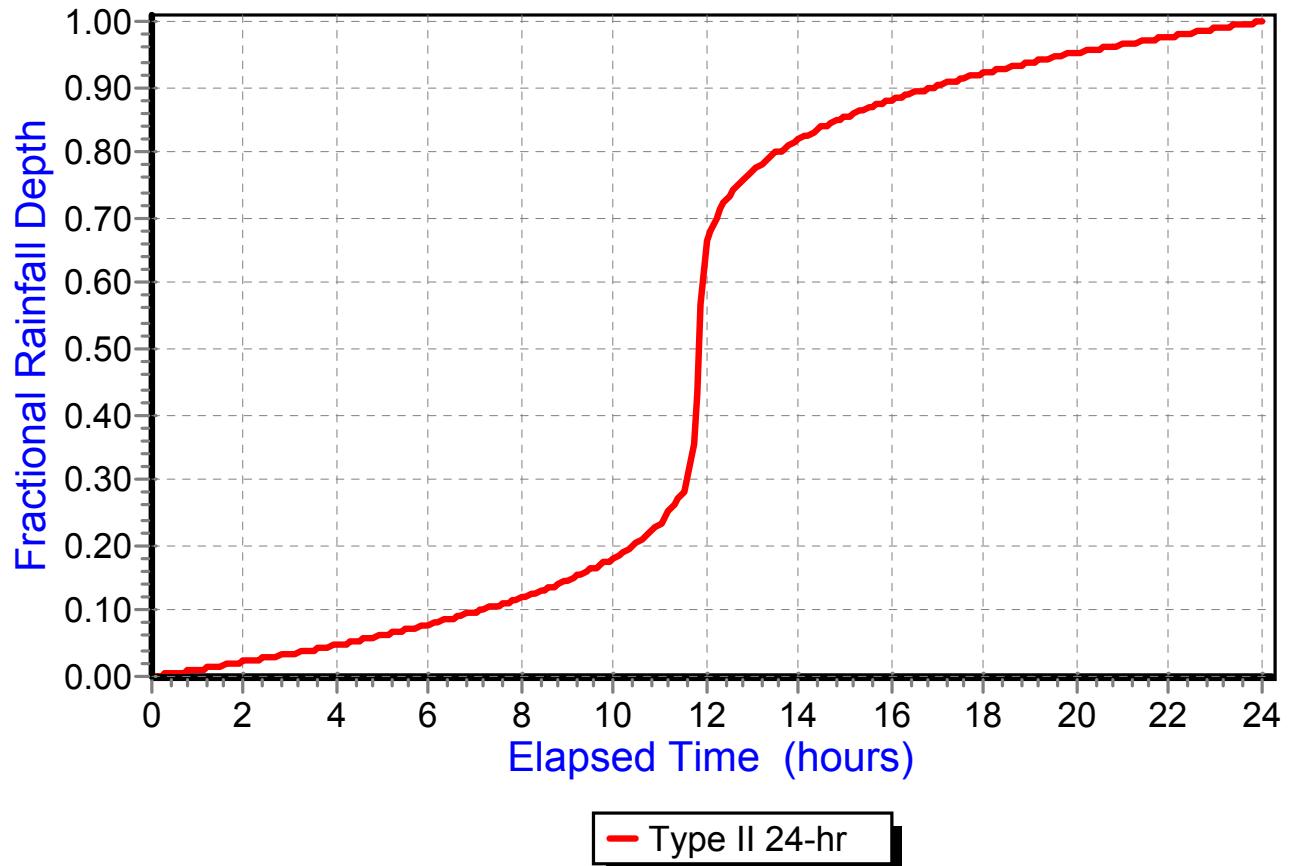
May 2011 Storm Data


5:53 (MDT) May 24, 2011 - 5:53 (MDT) May 25, 2011

Billings Logan International Airport

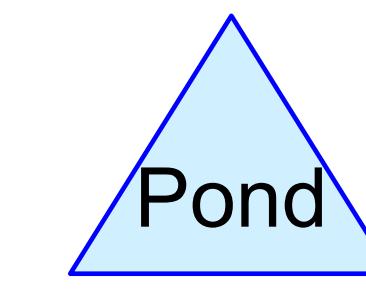
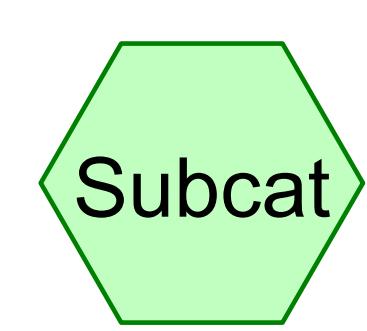
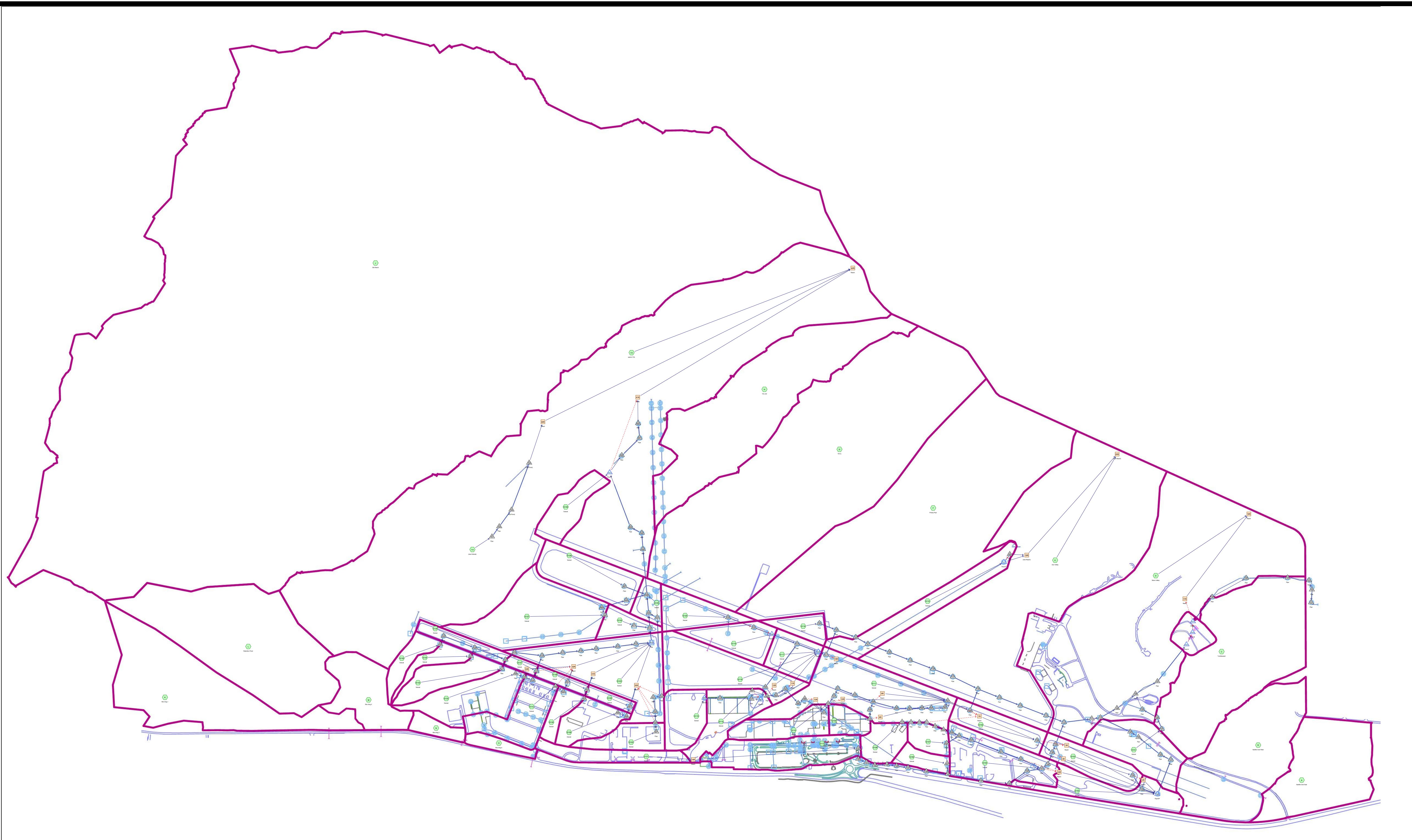
NWS Time Readings (MDT)	Elapsed Time (hours)	NWS Precipitation				Fraction of Total Storm Depth
		Readings	Accumulated	Incremental	Accumulated	
		Per 1 hour (in.)	(inches)	Precipitation (inches)	Precipitation (inches)	
5:10	0.0	0.00	0.00	0.00	0.00	0.00
5:30	0.3	0.00	0.00	0.00	0.00	0.00
5:53	0.7	0.00	0.00	0.00	0.00	0.00
6:12	1.0	0.00	0.00	0.00	0.00	0.00
6:19	1.2	0.00	0.00	0.00	0.00	0.00
6:27	1.3	0.00	0.00	0.00	0.00	0.00
6:36	1.4	0.00	0.00	0.00	0.00	0.00
6:49	1.7	0.00	0.00	0.00	0.00	0.00
6:53	1.7	0.00	0.00	0.00	0.00	0.00
7:12	2.0	0.00	0.00	0.00	0.00	0.00
7:19	2.2	0.01	0.01	0.01	0.01	0.00
7:25	2.3	0.01	0.00	0.01	0.01	0.00
7:44	2.6	0.01	0.00	0.01	0.01	0.00
7:48	2.6	0.02	0.01	0.02	0.02	0.01
7:53	2.7	0.02	0.00	0.02	0.02	0.01
7:54	2.7	0.00	0.00	0.02	0.02	0.01
8:37	3.5	0.00	0.00	0.02	0.02	0.01
8:53	3.7	0.00	0.00	0.02	0.02	0.01
9:40	4.5	0.05	0.05	0.07	0.07	0.02
9:46	4.6	0.07	0.02	0.09	0.09	0.03
9:53	4.7	0.09	0.02	0.11	0.11	0.03
10:06	4.9	0.05	0.05	0.16	0.16	0.05
10:11	5.0	0.06	0.01	0.17	0.17	0.05
10:53	5.7	0.07	0.01	0.18	0.18	0.05
11:06	5.9	0.00	0.00	0.18	0.18	0.05
11:53	6.7	0.09	0.09	0.27	0.27	0.08
12:21	7.2	0.03	0.03	0.30	0.30	0.09
12:41	7.5	0.03	0.00	0.30	0.30	0.09
12:53	7.7	0.03	0.03	0.33	0.33	0.10
13:53	8.7	0.09	0.06	0.39	0.39	0.12
14:53	9.7	0.22	0.22	0.61	0.61	0.18
15:27	10.3	0.12	0.12	0.73	0.73	0.22
15:53	10.7	0.71	0.59	1.32	1.32	0.40

NWS Time Readings (MDT)	Elapsed Time (hours)	NWS Precipitation				Fraction of Total Storm Depth
		Readings	Accumulated	Incremental	Accumulated	
		Per 1 hour (in.)	(inches)	Precipitation	(inches)	
15:58	10.8	0.28	0.28	0.28	1.60	0.48
16:15	11.1	0.67	0.39	0.39	1.99	0.60
16:53	11.7	1.02	0.35	0.35	2.34	0.70
17:29	12.3	0.18	0.18	0.18	2.52	0.76
17:34	12.4	0.19	0.01	0.01	2.53	0.76
17:53	12.7	0.21	0.02	0.02	2.55	0.77
18:20	13.2	0.11	0.11	0.11	2.66	0.80
18:53	13.7	0.45	0.34	0.34	3.00	0.90
18:58	13.8	0.00	0.00	0.00	3.00	0.90
19:12	14.0	0.03	0.03	0.03	3.03	0.91
19:16	14.1	0.03	0.00	0.00	3.03	0.91
19:23	14.2	0.03	0.00	0.00	3.03	0.91
19:33	14.4	0.04	0.01	0.01	3.04	0.92
19:53	14.7	0.04	0.00	0.00	3.04	0.92
20:53	15.7	0.01	0.01	0.01	3.05	0.92
21:39	16.5	0.02	0.01	0.01	3.06	0.92
21:53	16.7	0.05	0.03	0.03	3.09	0.93
22:22	17.2	0.00	0.00	0.00	3.09	0.93
22:40	17.5	0.01	0.01	0.01	3.10	0.93
22:53	17.7	0.01	0.00	0.00	3.10	0.93
23:34	18.4	0.00	0.00	0.00	3.10	0.93
23:53	18.7	0.00	0.00	0.00	3.10	0.93
0:46	19.5	0.01	0.01	0.01	3.11	0.94
0:53	19.6	0.01	0.00	0.00	3.11	0.94
1:18	20.0	0.00	0.00	0.00	3.11	0.94
1:27	20.2	0.00	0.00	0.00	3.11	0.94
1:30	20.2	0.00	0.00	0.00	3.11	0.94
1:50	20.6	0.00	0.00	0.00	3.11	0.94
1:53	20.6	0.00	0.00	0.00	3.11	0.94
1:59	20.7	0.00	0.00	0.00	3.11	0.94
2:53	21.6	0.06	0.06	0.06	3.17	0.95
3:53	22.6	0.07	0.07	0.07	3.24	0.98
4:53	23.6	0.06	0.06	0.06	3.30	0.99
5:31	24.2	0.01	0.01	0.01	3.31	1.00
5:53	24.6	0.01	0.01	0.01	3.32	1.00
Total			3.32			


Rainfall Depth vs. Time for May 24, 2011 Storm

**100-YEAR, 24-HOUR STORM
Type II
HydroCAD Storm Curve**

Storm Distribution Report




Rainfall Depth vs. Time

APPENDIX D

HydroCAD Routing Diagram

Appendix D

Routing Diagram for BIL012512
Prepared by Microsoft, Printed 2/23/2012
HydroCAD® 10.00 s/n 06737 © 2011 HydroCAD Software Solutions LLC

APPENDIX E

HydroCAD Summary
5-Year, 24-Hour Storm

Time span=0.00-96.00 hrs, dt=0.01 hrs, 9601 points

Runoff by SCS TR-20 method, UH=SCS

Reach routing by Stor-Ind+Trans method - Pond routing by Stor-Ind method

Subcatchment A: Saddle Club EastRunoff Area=49.000 ac 2.04% Impervious Runoff Depth=0.23"
Flow Length=2,646' Tc=43.5 min CN=71 Runoff=4.30 cfs 0.927 af**Subcatchment B: Saddle Club West**Runoff Area=67.000 ac 5.97% Impervious Runoff Depth=0.25"
Flow Length=3,022' Tc=49.7 min CN=72 Runoff=6.37 cfs 1.403 af**Subcatchment C: Tumbleweed**Runoff Area=92.000 ac 8.70% Impervious Runoff Depth=0.25"
Flow Length=2,860' Tc=37.3 min CN=72 Runoff=10.58 cfs 1.927 af**Subcatchment D: Moon Valley**Runoff Area=192.000 ac 13.02% Impervious Runoff Depth=0.30"
Flow Length=5,340' Tc=75.3 min CN=74 Runoff=18.58 cfs 4.869 af**Subcatchment E: Sun Valley**Runoff Area=207.000 ac 6.28% Impervious Runoff Depth=0.25"
Flow Length=5,221' Tc=80.8 min CN=72 Runoff=14.33 cfs 4.335 af**Subcatchment F: Prickly Pear**Runoff Area=208.000 ac 4.33% Impervious Runoff Depth=0.23"
Flow Length=6,238' Tc=88.1 min CN=71 Runoff=11.50 cfs 3.935 af**Subcatchment G: TW G**Runoff Area=247.000 ac 2.83% Impervious Runoff Depth=0.23"
Flow Length=5,669' Tc=56.8 min CN=71 Runoff=18.25 cfs 4.673 af**Subcatchment H: 10L end**Runoff Area=101.000 ac 2.97% Impervious Runoff Depth=0.23"
Flow Length=6,495' Tc=88.7 min CN=71 Runoff=5.64 cfs 1.911 af**Subcatchment I-a: (new Subcat)**Runoff Area=154.000 ac 0.65% Impervious Runoff Depth=0.20"
Flow Length=4,000' Tc=75.5 min CN=70 Runoff=8.00 cfs 2.619 af**Subcatchment I-b: west of 10L**Runoff Area=300.000 ac 3.33% Impervious Runoff Depth=0.23"
Flow Length=6,950' Slope=0.0250 '/' Tc=48.8 min CN=71 Runoff=24.45 cfs 5.675 af**Subcatchment J: Old Ranch**Runoff Area=1,543.000 ac 0.00% Impervious Runoff Depth=0.20"
Flow Length=16,574' Tc=308.6 min CN=70 Runoff=35.01 cfs 26.244 af**Subcatchment K: Rim Xing 1**Runoff Area=74.000 ac 2.70% Impervious Runoff Depth=0.23"
Flow Length=4,400' Slope=0.0200 '/' Tc=94.0 min CN=71 Runoff=3.96 cfs 1.400 af**Subcatchment L: Retention Pond**Runoff Area=97.000 ac 0.00% Impervious Runoff Depth=0.20"
Flow Length=3,889' Slope=0.0200 '/' Tc=85.4 min CN=70 Runoff=4.63 cfs 1.650 af**Subcatchment M: Rim Xing 2**Runoff Area=25.000 ac 20.00% Impervious Runoff Depth=0.36"
Flow Length=1,638' Tc=48.8 min CN=76 Runoff=4.25 cfs 0.757 af**Subcatchment N: Rim Xing 3**Runoff Area=5.000 ac 0.00% Impervious Runoff Depth=0.20"
Flow Length=1,044' Tc=40.7 min CN=70 Runoff=0.38 cfs 0.085 af**Subcatchment O: Rim Xing 4**Runoff Area=5.000 ac 0.00% Impervious Runoff Depth=0.20"
Flow Length=1,108' Slope=0.0140 '/' Tc=9.7 min CN=70 Runoff=0.98 cfs 0.085 af

Subcatchment S101: Subcat	Runoff Area=24.000 ac 16.67% Impervious Runoff Depth=0.33" Flow Length=1,303' Tc=12.6 min CN=75 Runoff=9.11 cfs 0.666 af
Subcatchment S102: Subcat	Runoff Area=19.000 ac 31.58% Impervious Runoff Depth=0.47" Flow Length=2,563' Tc=23.9 min CN=79 Runoff=7.70 cfs 0.736 af
Subcatchment S103: Subcat	Runoff Area=16.000 ac 43.75% Impervious Runoff Depth=0.58" Flow Length=1,610' Tc=17.8 min CN=82 Runoff=10.47 cfs 0.778 af
Subcatchment S104: Subcat	Runoff Area=27.000 ac 51.85% Impervious Runoff Depth=0.72" Flow Length=1,763' Tc=13.8 min CN=85 Runoff=25.94 cfs 1.626 af
Subcatchment S105: Subcat	Runoff Area=14.000 ac 42.86% Impervious Runoff Depth=0.58" Flow Length=1,480' Tc=14.0 min CN=82 Runoff=10.46 cfs 0.681 af
Subcatchment S106: Subcat	Runoff Area=6.000 ac 100.00% Impervious Runoff Depth=1.68" Flow Length=910' Tc=7.0 min CN=98 Runoff=15.31 cfs 0.838 af
Subcatchment S107: Subcat	Runoff Area=7.000 ac 100.00% Impervious Runoff Depth=1.68" Flow Length=676' Tc=5.7 min CN=98 Runoff=18.63 cfs 0.977 af
Subcatchment S108: Subcat	Runoff Area=9.000 ac 100.00% Impervious Runoff Depth=1.68" Flow Length=803' Slope=0.0200 '/' Tc=6.7 min CN=98 Runoff=23.19 cfs 1.256 af
Subcatchment S109: Subcat	Runoff Area=6.000 ac 100.00% Impervious Runoff Depth=1.68" Flow Length=564' Tc=5.2 min CN=98 Runoff=16.22 cfs 0.838 af
Subcatchment S110: Subcat	Runoff Area=14.000 ac 92.86% Impervious Runoff Depth=1.48" Flow Length=1,816' Tc=17.2 min CN=96 Runoff=24.08 cfs 1.724 af
Subcatchment S111: Subcat	Runoff Area=46.000 ac 54.35% Impervious Runoff Depth=0.72" Flow Length=3,618' Tc=28.9 min CN=85 Runoff=28.47 cfs 2.770 af
Subcatchment S112: Subcat	Runoff Area=23.000 ac 4.35% Impervious Runoff Depth=0.23" Flow Length=3,317' Tc=21.5 min CN=71 Runoff=3.26 cfs 0.435 af
Subcatchment S113: Subcat	Runoff Area=26.000 ac 96.15% Impervious Runoff Depth=1.57" Flow Length=2,541' Tc=19.4 min CN=97 Runoff=43.93 cfs 3.409 af
Subcatchment S114: Subcat	Runoff Area=17.000 ac 82.35% Impervious Runoff Depth=1.22" Flow Length=1,541' Tc=13.6 min CN=93 Runoff=27.93 cfs 1.733 af
Subcatchment S115: Subcat	Runoff Area=14.000 ac 21.43% Impervious Runoff Depth=0.36" Flow Length=1,114' Tc=12.7 min CN=76 Runoff=6.00 cfs 0.424 af
Subcatchment S116: Subcat	Runoff Area=32.000 ac 31.25% Impervious Runoff Depth=0.47" Flow Length=2,438' Tc=22.8 min CN=79 Runoff=13.39 cfs 1.240 af
Subcatchment S117: Subcat	Runoff Area=12.000 ac 33.33% Impervious Runoff Depth=0.47" Flow Length=926' Tc=11.1 min CN=79 Runoff=7.64 cfs 0.465 af

Subcatchment S118: Subcat

Runoff Area=7.000 ac 42.86% Impervious Runoff Depth=0.58"
 Flow Length=1,011' Tc=9.1 min CN=82 Runoff=6.35 cfs 0.341 af

Subcatchment S119: Subcat

Runoff Area=14.000 ac 35.71% Impervious Runoff Depth=0.50"
 Flow Length=1,540' Tc=13.3 min CN=80 Runoff=8.98 cfs 0.586 af

Subcatchment S120: Subcat

Runoff Area=14.000 ac 42.86% Impervious Runoff Depth=0.58"
 Flow Length=1,032' Tc=12.3 min CN=82 Runoff=11.16 cfs 0.681 af

Subcatchment S121: Subcat

Runoff Area=12.000 ac 41.67% Impervious Runoff Depth=0.58"
 Flow Length=1,945' Tc=17.3 min CN=82 Runoff=7.98 cfs 0.584 af

Subcatchment S122: Subcat

Runoff Area=11.000 ac 63.64% Impervious Runoff Depth=0.89"
 Flow Length=1,214' Tc=30.6 min CN=88 Runoff=8.24 cfs 0.812 af

Subcatchment S123: Subcat

Runoff Area=43.000 ac 18.60% Impervious Runoff Depth=0.33"
 Flow Length=2,468' Tc=40.3 min CN=75 Runoff=7.36 cfs 1.194 af

Subcatchment S124: Subcat

Runoff Area=8.000 ac 37.50% Impervious Runoff Depth=0.54"
 Flow Length=838' Tc=28.7 min CN=81 Runoff=3.49 cfs 0.361 af

Subcatchment S125: Subcat

Runoff Area=6.000 ac 50.00% Impervious Runoff Depth=0.67"
 Flow Length=410' Tc=4.6 min CN=84 Runoff=7.63 cfs 0.337 af

Subcatchment S126: Subcat

Runoff Area=23.000 ac 34.78% Impervious Runoff Depth=0.50"
 Flow Length=1,497' Tc=38.3 min CN=80 Runoff=7.42 cfs 0.963 af

Subcatchment S127: Subcat

Runoff Area=44.000 ac 11.36% Impervious Runoff Depth=0.28"
 Flow Length=2,892' Tc=41.3 min CN=73 Runoff=5.54 cfs 1.016 af

Subcatchment S128: Subcat

Runoff Area=4.000 ac 25.00% Impervious Runoff Depth=0.40"
 Flow Length=941' Tc=31.9 min CN=77 Runoff=1.05 cfs 0.132 af

Subcatchment S129: Subcat

Runoff Area=13.000 ac 53.85% Impervious Runoff Depth=0.72"
 Flow Length=1,221' Tc=31.4 min CN=85 Runoff=7.59 cfs 0.783 af

Subcatchment S130: Subcat

Runoff Area=6.000 ac 33.33% Impervious Runoff Depth=0.47"
 Flow Length=1,242' Tc=33.1 min CN=79 Runoff=1.94 cfs 0.233 af

Subcatchment S131: Subcat

Runoff Area=20.000 ac 40.00% Impervious Runoff Depth=0.54"
 Flow Length=1,656' Tc=11.9 min CN=81 Runoff=14.86 cfs 0.904 af

Subcatchment S132: Subcat

Runoff Area=23.000 ac 30.43% Impervious Runoff Depth=0.47"
 Flow Length=2,296' Tc=17.5 min CN=79 Runoff=11.42 cfs 0.891 af

Subcatchment S133: Subcat

Runoff Area=14.000 ac 7.14% Impervious Runoff Depth=0.25"
 Flow Length=2,027' Tc=36.1 min CN=72 Runoff=1.65 cfs 0.293 af

Subcatchment S134: Subcat

Runoff Area=6.000 ac 0.00% Impervious Runoff Depth=0.20"
 Flow Length=540' Tc=25.9 min CN=70 Runoff=0.61 cfs 0.102 af

Subcatchment S135: Subcat	Runoff Area=8.000 ac 0.00% Impervious Runoff Depth=0.20" Flow Length=1,582' Tc=33.7 min CN=70 Runoff=0.69 cfs 0.136 af
Subcatchment S136: Subcat	Runoff Area=7.000 ac 42.86% Impervious Runoff Depth=0.58" Flow Length=677' Tc=27.4 min CN=82 Runoff=3.47 cfs 0.341 af
Subcatchment S137: Subcat	Runoff Area=2.000 ac 0.00% Impervious Runoff Depth=0.20" Flow Length=534' Tc=6.0 min CN=70 Runoff=0.49 cfs 0.034 af
Subcatchment S138: Subcat	Runoff Area=4.000 ac 25.00% Impervious Runoff Depth=0.40" Flow Length=540' Tc=6.7 min CN=77 Runoff=2.53 cfs 0.132 af
Subcatchment S139: Subcat	Runoff Area=13.000 ac 7.69% Impervious Runoff Depth=0.25" Flow Length=1,350' Tc=19.0 min CN=72 Runoff=2.40 cfs 0.272 af
Reach 2R: Reach	Avg. Flow Depth=0.01' Max Vel=0.19 fps Inflow=2.56 cfs 0.029 af n=0.016 L=600.0' S=0.0034 '/' Capacity=227.83 cfs Outflow=0.36 cfs 0.029 af
Reach 3R: Reach	Avg. Flow Depth=0.08' Max Vel=0.55 fps Inflow=2.57 cfs 0.016 af n=0.025 L=2,000.0' S=0.0064 '/' Capacity=952.03 cfs Outflow=0.17 cfs 0.016 af
Reach 4R: Reach	Avg. Flow Depth=0.00' Max Vel=0.00 fps Inflow=0.00 cfs 0.000 af n=0.025 L=1,850.0' S=0.0087 '/' Capacity=1,105.76 cfs Outflow=0.00 cfs 0.000 af
Reach 7R: Reach	Avg. Flow Depth=0.04' Max Vel=0.52 fps Inflow=0.49 cfs 0.002 af n=0.025 L=1,200.0' S=0.0119 '/' Capacity=987.09 cfs Outflow=0.04 cfs 0.002 af
Reach 8R: Reach	Avg. Flow Depth=0.01' Max Vel=0.81 fps Inflow=10.63 cfs 0.142 af n=0.016 L=1,274.0' S=0.0251 '/' Capacity=616.42 cfs Outflow=3.16 cfs 0.142 af
Reach 9R: Reach	Avg. Flow Depth=0.00' Max Vel=0.00 fps Inflow=0.00 cfs 0.000 af n=0.025 L=1,200.0' S=0.0225 '/' Capacity=373.13 cfs Outflow=0.00 cfs 0.000 af
Reach 10R: Reach	Avg. Flow Depth=0.02' Max Vel=0.76 fps Inflow=17.11 cfs 0.410 af n=0.022 L=1,925.0' S=0.0201 '/' Capacity=400.43 cfs Outflow=5.25 cfs 0.410 af
Reach 11R: Reach	Avg. Flow Depth=0.01' Max Vel=0.52 fps Inflow=1.88 cfs 0.099 af n=0.022 L=800.0' S=0.0285 '/' Capacity=477.70 cfs Outflow=1.50 cfs 0.099 af
Reach 12R: Reach	Avg. Flow Depth=0.00' Max Vel=0.29 fps Inflow=1.28 cfs 0.038 af n=0.022 L=1,175.0' S=0.0266 '/' Capacity=461.24 cfs Outflow=0.33 cfs 0.038 af
Reach 13R: Reach	Avg. Flow Depth=0.01' Max Vel=0.68 fps Inflow=2.20 cfs 0.164 af n=0.013 L=380.0' S=0.0147 '/' Capacity=580.94 cfs Outflow=2.19 cfs 0.164 af
Reach 14R: Reach 24.0" Round Pipe n=0.012 L=2,500.0' S=0.0140 '/' Capacity=29.04 cfs Outflow=7.12 cfs 0.584 af	Avg. Flow Depth=0.67' Max Vel=7.64 fps Inflow=7.98 cfs 0.584 af
Reach 15R: Reach	Avg. Flow Depth=0.00' Max Vel=0.00 fps Inflow=0.00 cfs 0.000 af n=0.025 L=2,105.0' S=0.0103 '/' Capacity=189.63 cfs Outflow=0.00 cfs 0.000 af

Reach 16R: Reach	Avg. Flow Depth=0.43' Max Vel=2.26 fps Inflow=20.79 cfs 0.348 af n=0.022 L=1,950.0' S=0.0087 '/' Capacity=628.29 cfs Outflow=10.45 cfs 0.348 af
Reach 17R: Reach	Avg. Flow Depth=0.00' Max Vel=0.00 fps Inflow=0.00 cfs 0.000 af n=0.016 L=2,700.0' S=0.0589 '/' Capacity=15,111,117.63 cfs Outflow=0.00 cfs 0.000 af
Reach 18R: Reach	Avg. Flow Depth=0.79' Max Vel=10.66 fps Inflow=18.58 cfs 4.869 af 48.0" Round Pipe n=0.012 L=50.0' S=0.0200 '/' Capacity=220.07 cfs Outflow=18.57 cfs 4.869 af
Reach 19R: (new Reach)	Avg. Flow Depth=0.00' Max Vel=23.08 fps Inflow=2.06 cfs 0.435 af n=0.016 L=2,973.0' S=0.0633 '/' Capacity=11,441,841.62 cfs Outflow=2.06 cfs 0.435 af
Reach 20R: (new Reach)	Avg. Flow Depth=0.71' Max Vel=10.06 fps Inflow=15.29 cfs 4.770 af 48.0" Round Pipe n=0.012 L=50.0' S=0.0200 '/' Capacity=220.07 cfs Outflow=15.29 cfs 4.770 af
Reach 30R: Reach	Avg. Flow Depth=0.25' Max Vel=2.14 fps Inflow=11.47 cfs 0.975 af n=0.025 L=910.0' S=0.0205 '/' Capacity=401.59 cfs Outflow=10.20 cfs 0.975 af
Reach 31R: Reach	Avg. Flow Depth=0.17' Max Vel=1.54 fps Inflow=2.94 cfs 0.364 af n=0.025 L=1,300.0' S=0.0185 '/' Capacity=751.64 cfs Outflow=2.11 cfs 0.364 af
Reach 32R: Reach	Avg. Flow Depth=0.30' Max Vel=2.27 fps Inflow=14.86 cfs 0.904 af n=0.025 L=1,455.0' S=0.0185 '/' Capacity=751.29 cfs Outflow=10.01 cfs 0.904 af
Reach 33R: Reach	Avg. Flow Depth=0.00' Max Vel=0.00 fps Inflow=0.00 cfs 0.000 af n=0.016 L=800.0' S=0.0188 '/' Capacity=193.73 cfs Outflow=0.00 cfs 0.000 af
Reach 40R: Reach	Avg. Flow Depth=0.01' Max Vel=7.99 fps Inflow=8.00 cfs 2.619 af n=0.030 L=7,250.0' S=0.0275 '/' Capacity=4,347,964.77 cfs Outflow=7.37 cfs 2.619 af
Reach 41R: Reach	Avg. Flow Depth=0.02' Max Vel=9.74 fps Inflow=22.25 cfs 8.935 af n=0.030 L=5,852.0' S=0.0404 '/' Capacity=5,730,418.04 cfs Outflow=22.08 cfs 8.935 af
Reach 42R: Reach	Avg. Flow Depth=1.21' Max Vel=13.65 fps Inflow=43.69 cfs 17.229 af 48.0" Round Pipe n=0.012 L=50.0' S=0.0200 '/' Capacity=220.07 cfs Outflow=43.69 cfs 17.229 af
Pond 101: Pipe	Peak Elev=3,203.87' Inflow=7.71 cfs 22.235 af 36.0" Round Culvert n=0.012 L=109.0' S=0.0927 '/' Outflow=7.71 cfs 22.235 af
Pond 102: Pipe	Peak Elev=3,206.15' Inflow=7.71 cfs 22.235 af 36.0" Round Culvert n=0.012 L=256.0' S=0.0085 '/' Outflow=7.71 cfs 22.235 af
Pond 103: Pipe	Peak Elev=3,209.47' Inflow=7.71 cfs 22.235 af 36.0" Round Culvert n=0.012 L=125.0' S=0.0274 '/' Outflow=7.71 cfs 22.235 af
Pond 104: Pipe	Peak Elev=3,226.54' Inflow=7.71 cfs 22.235 af 36.0" Round Culvert n=0.012 L=366.0' S=0.0466 '/' Outflow=7.71 cfs 22.235 af
Pond 105: Pipe	Peak Elev=3,346.44' Inflow=7.71 cfs 22.235 af 24.0" Round Culvert n=0.012 L=676.0' S=0.1772 '/' Outflow=7.71 cfs 22.235 af

Pond 106: Pipe

Peak Elev=3,363.14' Inflow=7.71 cfs 22.235 af
 24.0" Round Culvert n=0.012 L=645.0' S=0.0259 '/' Outflow=7.71 cfs 22.235 af

Pond 107: Pipe

Peak Elev=3,415.29' Inflow=195.62 cfs 22.355 af
 60.0" Round Culvert n=0.012 L=700.0' S=0.0195 '/' Outflow=195.62 cfs 22.355 af

Pond 108: Pipe

Peak Elev=3,430.17' Inflow=195.62 cfs 22.355 af
 54.0" Round Culvert n=0.012 L=400.0' S=0.0352 '/' Outflow=195.62 cfs 22.355 af

Pond 109: Pipe

Peak Elev=3,437.80' Inflow=186.68 cfs 21.689 af
 60.0" Round Culvert n=0.012 L=300.0' S=0.0286 '/' Outflow=186.68 cfs 21.689 af

Pond 110: Pipe

Peak Elev=3,447.65' Inflow=186.68 cfs 21.689 af
 66.0" Round Culvert n=0.012 L=374.0' S=0.0271 '/' Outflow=186.68 cfs 21.689 af

Pond 111: Pipe

Peak Elev=3,452.65' Inflow=174.88 cfs 19.809 af
 60.0" Round Culvert n=0.012 L=200.0' S=0.0246 '/' Outflow=174.88 cfs 19.809 af

Pond 112: Pipe

Peak Elev=3,468.42' Inflow=174.88 cfs 19.809 af
 60.0" Round Culvert n=0.012 L=390.0' S=0.0404 '/' Outflow=174.88 cfs 19.809 af

Pond 113: Pipe

Peak Elev=3,488.81' Inflow=84.24 cfs 10.800 af
 60.0" Round Culvert n=0.012 L=311.0' S=0.0100 '/' Outflow=84.24 cfs 10.800 af

Pond 114: Pipe

Peak Elev=3,493.24' Inflow=84.24 cfs 10.800 af
 60.0" Round Culvert n=0.012 L=449.0' S=0.0101 '/' Outflow=84.24 cfs 10.800 af

Pond 115: Pipe

Peak Elev=3,498.73' Inflow=84.24 cfs 10.800 af
 54.0" Round Culvert n=0.012 L=364.0' S=0.0141 '/' Outflow=84.24 cfs 10.800 af

Pond 116: Pipe

Peak Elev=3,502.14' Inflow=84.24 cfs 10.800 af
 60.0" Round Culvert n=0.012 L=376.0' S=0.0088 '/' Outflow=84.24 cfs 10.800 af

Pond 117: Pipe

Peak Elev=3,505.86' Inflow=50.19 cfs 4.293 af
 42.0" Round Culvert n=0.012 L=457.0' S=0.0089 '/' Outflow=50.19 cfs 4.293 af

Pond 118: Pipe

Peak Elev=3,508.22' Inflow=50.19 cfs 4.293 af
 42.0" Round Culvert n=0.012 L=343.0' S=0.0055 '/' Outflow=50.19 cfs 4.293 af

Pond 119: Pipe

Peak Elev=3,510.80' Inflow=50.19 cfs 4.293 af
 42.0" Round Culvert n=0.012 L=401.0' S=0.0069 '/' Outflow=50.19 cfs 4.293 af

Pond 120: Pipe

Peak Elev=3,513.29' Inflow=50.19 cfs 4.293 af
 42.0" Round Culvert n=0.012 L=360.0' S=0.0069 '/' Outflow=50.19 cfs 4.293 af

Pond 121: Pipe

Peak Elev=3,518.00' Inflow=50.19 cfs 4.293 af
 42.0" Round Culvert n=0.012 L=381.0' S=0.0134 '/' Outflow=50.19 cfs 4.293 af

Pond 122: Pipe

Peak Elev=3,520.64' Inflow=50.19 cfs 4.293 af
 42.0" Round Culvert n=0.012 L=223.0' S=0.0110 '/' Outflow=50.19 cfs 4.293 af

Pond 123: Pipe	Peak Elev=3,524.32' Inflow=50.19 cfs 4.293 af 42.0" Round Culvert n=0.012 L=340.0' S=0.0111 '/' Outflow=50.19 cfs 4.293 af
Pond 124: Pipe	Peak Elev=3,526.76' Inflow=6.35 cfs 0.341 af 24.0" Round Culvert n=0.012 L=289.0' S=0.0036 '/' Outflow=6.35 cfs 0.341 af
Pond 125: Pipe	Peak Elev=3,434.84' Inflow=9.11 cfs 0.666 af 30.0" Round Culvert n=0.012 L=299.0' S=0.0235 '/' Outflow=9.11 cfs 0.666 af
Pond 126: Pipe	Peak Elev=3,437.63' Inflow=9.11 cfs 0.666 af 30.0" Round Culvert n=0.012 L=271.0' S=0.0100 '/' Outflow=9.11 cfs 0.666 af
Pond 127: Pipe	Peak Elev=3,439.79' Inflow=9.11 cfs 0.666 af 30.0" Round Culvert n=0.012 L=200.0' S=0.0100 '/' Outflow=9.11 cfs 0.666 af
Pond 128: Pipe	Peak Elev=3,473.25' Inflow=14.00 cfs 1.879 af 30.0" Round Culvert n=0.012 L=567.0' S=0.0500 '/' Outflow=14.00 cfs 1.879 af
Pond 129: Pipe	Peak Elev=3,473.92' Inflow=14.00 cfs 1.879 af 30.0" Round Culvert n=0.012 L=40.0' S=0.0075 '/' Outflow=14.00 cfs 1.879 af
Pond 130: Pipe	Peak Elev=3,475.02' Inflow=14.00 cfs 1.879 af 30.0" Round Culvert n=0.012 L=550.0' S=0.0006 '/' Outflow=14.00 cfs 1.879 af
Pond 131: Pipe	Peak Elev=3,477.50' Inflow=14.00 cfs 1.879 af 30.0" Round Culvert n=0.012 L=192.0' S=0.0188 '/' Outflow=14.00 cfs 1.879 af
Pond 132: Pipe/DP	Peak Elev=3,486.56' Storage=6,496 cf Inflow=20.73 cfs 1.879 af Primary=14.00 cfs 1.879 af Secondary=0.00 cfs 0.000 af Outflow=14.00 cfs 1.879 af
Pond 133: Pipe	Peak Elev=3,486.94' Inflow=7.91 cfs 0.749 af 18.0" Round Culvert n=0.012 L=269.0' S=0.0055 '/' Outflow=7.91 cfs 0.749 af
Pond 134: Pipe	Peak Elev=3,488.73' Inflow=10.47 cfs 0.778 af Primary=7.91 cfs 0.749 af Secondary=2.56 cfs 0.029 af Outflow=10.47 cfs 0.778 af
Pond 135: Pipe	Peak Elev=3,499.49' Inflow=97.12 cfs 9.017 af Primary=94.60 cfs 9.009 af Secondary=2.53 cfs 0.008 af Outflow=97.12 cfs 9.017 af
Pond 138: Pipe	Peak Elev=3,491.42' Inflow=97.12 cfs 9.017 af Primary=97.12 cfs 9.017 af Secondary=0.00 cfs 0.000 af Outflow=97.12 cfs 9.017 af
Pond 139: Pipe	Peak Elev=3,502.91' Inflow=10.46 cfs 0.683 af Primary=9.25 cfs 0.675 af Secondary=1.21 cfs 0.008 af Outflow=10.46 cfs 0.683 af
Pond 140: Pipe	Peak Elev=3,501.16' Inflow=88.36 cfs 8.342 af 42.0" Round Culvert n=0.012 L=213.0' S=0.0176 '/' Outflow=88.36 cfs 8.342 af
Pond 141: Pipe	Peak Elev=3,505.20' Inflow=109.15 cfs 8.690 af Primary=88.36 cfs 8.342 af Secondary=20.79 cfs 0.348 af Outflow=109.15 cfs 8.690 af

Pond 142: Pipe

Peak Elev=3,506.73' Inflow=52.63 cfs 4.831 af
 42.0" Round Culvert n=0.012 L=244.0' S=0.0188 '/' Outflow=52.63 cfs 4.831 af

Pond 143: Pipe

Peak Elev=3,516.52' Inflow=52.63 cfs 4.831 af
 42.0" Round Culvert n=0.012 L=349.0' S=0.0281 '/' Outflow=52.63 cfs 4.831 af

Pond 144: Pipe

Peak Elev=3,521.41' Inflow=52.63 cfs 4.831 af
 42.0" Round Culvert n=0.012 L=473.0' S=0.0101 '/' Outflow=52.63 cfs 4.831 af

Pond 145: Pipe

Peak Elev=3,528.06' Inflow=52.63 cfs 4.831 af
 42.0" Round Culvert n=0.012 L=529.0' S=0.0128 '/' Outflow=52.63 cfs 4.831 af

Pond 146: Pipe

Peak Elev=3,531.58' Inflow=47.69 cfs 3.993 af
 42.0" Round Culvert n=0.012 L=369.0' S=0.0094 '/' Outflow=47.69 cfs 3.993 af

Pond 147: Pipe

Peak Elev=3,538.90' Inflow=47.69 cfs 3.993 af
 42.0" Round Culvert n=0.012 L=297.0' S=0.0253 '/' Outflow=47.69 cfs 3.993 af

Pond 148: Pipe

Peak Elev=3,541.62' Inflow=47.69 cfs 3.993 af
 42.0" Round Culvert n=0.012 L=201.0' S=0.0130 '/' Outflow=47.69 cfs 3.993 af

Pond 149: Pipe

Peak Elev=3,552.91' Inflow=47.69 cfs 3.993 af
 42.0" Round Culvert n=0.012 L=134.0' S=0.0851 '/' Outflow=47.69 cfs 3.993 af

Pond 150: Pipe

Peak Elev=3,555.32' Inflow=47.69 cfs 3.993 af
 42.0" Round Culvert n=0.012 L=270.0' S=0.0075 '/' Outflow=47.69 cfs 3.993 af

Pond 151: Pipe

Peak Elev=3,556.25' Inflow=47.69 cfs 3.993 af
 42.0" Round Culvert n=0.012 L=100.0' S=0.0073 '/' Outflow=47.69 cfs 3.993 af

Pond 152: Pipe

Peak Elev=3,557.14' Inflow=47.69 cfs 3.993 af
 42.0" Round Culvert n=0.012 L=97.0' S=0.0038 '/' Outflow=47.69 cfs 3.993 af

Pond 153: Pipe

Peak Elev=3,559.85' Inflow=47.69 cfs 3.993 af
 42.0" Round Culvert n=0.012 L=73.0' S=0.0040 '/' Outflow=47.69 cfs 3.993 af

Pond 200: Pipe

Peak Elev=3,505.70' Inflow=41.71 cfs 2.234 af
 Primary=41.71 cfs 2.234 af Secondary=0.00 cfs 0.000 af Outflow=41.71 cfs 2.234 af

Pond 201: Pipe

Peak Elev=3,509.20' Inflow=41.71 cfs 2.234 af
 36.0" Round Culvert n=0.012 L=349.0' S=0.0108 '/' Outflow=41.71 cfs 2.234 af

Pond 202: Pipe

Peak Elev=3,518.82' Inflow=41.71 cfs 2.234 af
 36.0" Round Culvert n=0.012 L=516.0' S=0.0145 '/' Outflow=41.71 cfs 2.234 af

Pond 203: Pipe

Peak Elev=3,523.49' Inflow=41.71 cfs 2.234 af
 36.0" Round Culvert n=0.012 L=201.0' S=0.0182 '/' Outflow=41.71 cfs 2.234 af

Pond 204: Pipe

Peak Elev=3,528.33' Inflow=18.63 cfs 0.977 af
 24.0" Round Culvert n=0.012 L=258.0' S=0.0111 '/' Outflow=18.63 cfs 0.977 af

Pond 207: Pipe

Peak Elev=3,536.80' Inflow=15.31 cfs 0.838 af
 15.0" Round Culvert n=0.010 L=162.0' S=0.0048 '/' Outflow=15.31 cfs 0.838 af

Pond 208: Pipe

Peak Elev=3,525.56' Inflow=23.19 cfs 1.256 af
 36.0" Round Culvert n=0.012 L=140.0' S=0.0111 '/' Outflow=23.19 cfs 1.256 af

Pond 209: Pipe

Peak Elev=3,528.40' Inflow=23.19 cfs 1.256 af
 24.0" Round Culvert n=0.012 L=64.0' S=0.0233 '/' Outflow=23.19 cfs 1.256 af

Pond 210: Pipe

Peak Elev=3,531.06' Inflow=23.19 cfs 1.256 af
 24.0" Round Culvert n=0.012 L=190.0' S=0.0140 '/' Outflow=23.19 cfs 1.256 af

Pond 211: Pipe

Peak Elev=3,534.06' Inflow=23.19 cfs 1.256 af
 Primary=23.19 cfs 1.256 af Secondary=0.00 cfs 0.000 af Outflow=23.19 cfs 1.256 af

Pond 212: Pipe

Peak Elev=3,536.04' Inflow=23.19 cfs 1.256 af
 24.0" Round Culvert n=0.012 L=100.0' S=0.0198 '/' Outflow=23.19 cfs 1.256 af

Pond 213: Pipe

Peak Elev=3,538.06' Inflow=23.19 cfs 1.256 af
 24.0" Round Culvert n=0.012 L=100.0' S=0.0202 '/' Outflow=23.19 cfs 1.256 af

Pond 214: Pipe

Peak Elev=3,542.32' Inflow=23.19 cfs 1.256 af
 24.0" Round Culvert n=0.012 L=100.0' S=0.0194 '/' Outflow=23.19 cfs 1.256 af

Pond 300: Pipe

Peak Elev=3,433.00' Inflow=0.00 cfs 0.000 af
 48.0" Round Culvert n=0.012 L=56.0' S=0.0105 '/' Outflow=0.00 cfs 0.000 af

Pond 311: Pipe

Peak Elev=3,536.89' Inflow=44.99 cfs 3.953 af
 Primary=44.99 cfs 3.953 af Secondary=0.00 cfs 0.000 af Outflow=44.99 cfs 3.953 af

Pond 312: Pipe/DP

Peak Elev=3,542.42' Storage=73 cf Inflow=45.02 cfs 3.953 af
 36.0" Round Culvert n=0.025 L=137.0' S=0.0129 '/' Outflow=44.99 cfs 3.953 af

Pond 313: Pipe

Peak Elev=3,543.56' Inflow=28.06 cfs 2.110 af
 36.0" Round Culvert n=0.025 L=362.0' S=0.0152 '/' Outflow=28.06 cfs 2.110 af

Pond 314: Pipe/DP

Peak Elev=3,549.33' Storage=34 cf Inflow=20.08 cfs 1.267 af
 30.0" Round Culvert n=0.025 L=350.0' S=0.0094 '/' Outflow=20.06 cfs 1.267 af

Pond 315: Pipe

Peak Elev=3,549.65' Inflow=11.16 cfs 0.681 af
 Primary=11.16 cfs 0.681 af Secondary=0.00 cfs 0.000 af Outflow=11.16 cfs 0.681 af

Pond 316: Pipe

Peak Elev=3,553.67' Inflow=11.16 cfs 0.681 af
 Primary=11.16 cfs 0.681 af Secondary=0.00 cfs 0.000 af Outflow=11.16 cfs 0.681 af

Pond 327: Pipe

Peak Elev=3,601.03' Inflow=8.24 cfs 0.812 af
 18.0" Round Culvert n=0.012 L=75.0' S=0.0103 '/' Outflow=8.24 cfs 0.812 af

Pond 328: Pipe

Peak Elev=3,599.50' Inflow=8.24 cfs 0.812 af
 Primary=8.24 cfs 0.812 af Secondary=0.00 cfs 0.000 af Outflow=8.24 cfs 0.812 af

Pond 330: Pipe

Peak Elev=3,601.16' Inflow=8.24 cfs 0.812 af
 Primary=8.24 cfs 0.812 af Secondary=0.00 cfs 0.000 af Outflow=8.24 cfs 0.812 af

Pond 331: Pipe

Peak Elev=3,595.18' Inflow=8.24 cfs 0.812 af
 18.0" Round Culvert n=0.012 L=78.0' S=0.0133 '/' Outflow=8.24 cfs 0.812 af

Pond 333: Pipe

Peak Elev=3,598.19' Inflow=8.24 cfs 0.812 af
 Primary=5.37 cfs 0.751 af Secondary=2.87 cfs 0.060 af Outflow=8.24 cfs 0.812 af

Pond 337: Pipe

Peak Elev=3,574.97' Inflow=5.37 cfs 0.751 af
 12.0" Round Culvert n=0.012 L=164.0' S=0.0420 '/' Outflow=5.37 cfs 0.751 af

Pond 350: Pipe

Peak Elev=3,556.81' Inflow=8.16 cfs 0.843 af
 18.0" Round Culvert n=0.012 L=881.0' S=0.0164 '/' Outflow=8.16 cfs 0.843 af

Pond 351: Pipe/DP

Peak Elev=3,574.08' Storage=11,571 cf Inflow=24.59 cfs 0.842 af
 12.0" Round Culvert n=0.012 L=182.0' S=0.0330 '/' Outflow=8.16 cfs 0.843 af

Pond 356: Pipe

Peak Elev=3,513.87' Inflow=40.32 cfs 6.507 af
 Primary=40.32 cfs 6.507 af Secondary=0.00 cfs 0.000 af Outflow=40.32 cfs 6.507 af

Pond 357: Pipe

Peak Elev=3,520.80' Inflow=40.81 cfs 6.509 af
 Primary=40.32 cfs 6.507 af Secondary=0.49 cfs 0.002 af Outflow=40.81 cfs 6.509 af

Pond 362: Pipe

Peak Elev=3,521.21' Inflow=16.29 cfs 3.186 af
 18.0" Round Culvert n=0.012 L=116.0' S=0.0209 '/' Outflow=16.29 cfs 3.186 af

Pond 365: Pipe

Peak Elev=3,525.34' Inflow=16.29 cfs 3.186 af
 18.0" Round Culvert n=0.012 L=199.0' S=0.0221 '/' Outflow=16.29 cfs 3.186 af

Pond 366: Pipe

Peak Elev=3,529.06' Inflow=16.29 cfs 3.186 af
 18.0" Round Culvert n=0.012 L=166.0' S=0.0205 '/' Outflow=16.29 cfs 3.186 af

Pond 367: Pipe

Peak Elev=3,533.18' Inflow=16.29 cfs 3.186 af
 18.0" Round Culvert n=0.012 L=201.0' S=0.0201 '/' Outflow=16.29 cfs 3.186 af

Pond 368: Pipe

Peak Elev=3,537.27' Inflow=16.29 cfs 3.186 af
 18.0" Round Culvert n=0.012 L=203.0' S=0.0203 '/' Outflow=16.29 cfs 3.186 af

Pond 369: Pipe

Peak Elev=3,545.86' Inflow=16.29 cfs 3.186 af
 Primary=16.29 cfs 3.186 af Secondary=0.00 cfs 0.000 af Outflow=16.29 cfs 3.186 af

Pond 370: Pipe

Peak Elev=3,548.50' Inflow=11.09 cfs 2.491 af
 18.0" Round Culvert n=0.012 L=307.0' S=0.0088 '/' Outflow=11.09 cfs 2.491 af

Pond 371: Pipe

Peak Elev=3,551.19' Inflow=11.09 cfs 2.491 af
 18.0" Round Culvert n=0.012 L=307.0' S=0.0087 '/' Outflow=11.09 cfs 2.491 af

Pond 372: Pipe

Peak Elev=3,554.71' Inflow=11.09 cfs 2.491 af
 18.0" Round Culvert n=0.012 L=133.0' S=0.0329 '/' Outflow=11.09 cfs 2.491 af

Pond 373: Pipe

Peak Elev=3,560.53' Inflow=28.20 cfs 2.901 af
 Primary=11.09 cfs 2.491 af Secondary=17.11 cfs 0.410 af Outflow=28.20 cfs 2.901 af

Pond 374: Pipe

Peak Elev=3,558.71' Inflow=4.50 cfs 1.177 af
 15.0" Round Culvert n=0.012 L=130.0' S=0.0235 '/' Outflow=4.50 cfs 1.177 af

Pond 375: Pipe/DP

Peak Elev=3,584.50' Storage=655 cf Inflow=6.00 cfs 0.424 af
 12.0" Round Culvert n=0.012 L=246.0' S=0.0114 '/' Outflow=4.37 cfs 0.424 af

Pond 376: Pipe

Peak Elev=3,581.44' Inflow=4.37 cfs 0.424 af
 12.0" Round Culvert n=0.012 L=494.0' S=0.0115 '/' Outflow=4.37 cfs 0.424 af

Pond 377: Pipe

Peak Elev=3,572.76' Inflow=4.37 cfs 0.424 af
 12.0" Round Culvert n=0.012 L=159.0' S=0.0075 '/' Outflow=4.37 cfs 0.424 af

Pond 378: Pipe

Peak Elev=3,548.71' Inflow=5.60 cfs 0.695 af
 18.0" Round Culvert n=0.012 L=132.0' S=0.0328 '/' Outflow=5.60 cfs 0.695 af

Pond 379: Pipe

Peak Elev=3,553.38' Inflow=16.22 cfs 0.838 af
 Primary=5.60 cfs 0.695 af Secondary=10.63 cfs 0.142 af Outflow=16.22 cfs 0.838 af

Pond 381: Pipe

Peak Elev=3,580.03' Inflow=27.93 cfs 1.733 af
 Primary=7.67 cfs 1.315 af Secondary=20.26 cfs 0.418 af Outflow=27.93 cfs 1.733 af

Pond 382: Pipe

Peak Elev=3,573.81' Inflow=7.67 cfs 1.315 af
 Primary=6.39 cfs 1.276 af Secondary=1.28 cfs 0.038 af Outflow=7.67 cfs 1.315 af

Pond 383: Pipe

Peak Elev=3,568.92' Inflow=6.39 cfs 1.276 af
 12.0" Round Culvert n=0.012 L=195.0' S=0.0206 '/' Outflow=6.39 cfs 1.276 af

Pond 384: Pipe

Peak Elev=3,565.42' Inflow=6.39 cfs 1.276 af
 Primary=4.51 cfs 1.177 af Secondary=1.88 cfs 0.099 af Outflow=6.39 cfs 1.276 af

Pond 385: Pipe

Peak Elev=3,561.67' Inflow=4.51 cfs 1.177 af
 12.0" Round Culvert n=0.012 L=104.0' S=0.0064 '/' Outflow=4.51 cfs 1.177 af

Pond 386: Pipe

Peak Elev=3,564.88' Inflow=4.51 cfs 1.177 af
 Primary=2.31 cfs 1.012 af Secondary=2.20 cfs 0.164 af Outflow=4.51 cfs 1.177 af

Pond 400: Pipe

Peak Elev=3,498.54' Inflow=22.25 cfs 8.935 af
 36.0" Round Culvert n=0.012 L=50.0' S=0.0036 '/' Outflow=22.25 cfs 8.935 af

Pond 401: Pipe

Peak Elev=3,508.56' Inflow=22.25 cfs 8.935 af
 24.0" Round Culvert n=0.012 L=231.0' S=0.0301 '/' Outflow=22.25 cfs 8.935 af

Pond 402: Pipe

Peak Elev=3,525.38' Inflow=22.25 cfs 8.935 af
 24.0" Round Culvert n=0.012 L=418.0' S=0.0402 '/' Outflow=22.25 cfs 8.935 af

Pond 404: Pipe

Peak Elev=3,543.30' Inflow=58.65 cfs 8.663 af
 60.0" Round Culvert n=0.012 L=741.0' S=0.0025 '/' Outflow=58.65 cfs 8.663 af

Pond 405: Pipe

Peak Elev=3,544.05' Inflow=58.65 cfs 8.663 af
 60.0" Round Culvert n=0.012 L=203.0' S=0.0051 '/' Outflow=58.65 cfs 8.663 af

Pond 406: Pipe

Peak Elev=3,550.74' Inflow=58.65 cfs 8.663 af
 54.0" Round Culvert n=0.012 L=504.0' S=0.0142 '/' Outflow=58.65 cfs 8.663 af

Pond 407: Pipe

Peak Elev=3,564.27' Inflow=7.42 cfs 0.963 af
 24.0" Round Culvert n=0.012 L=400.0' S=0.0062 '/' Outflow=7.42 cfs 0.963 af

Pond 408: Pipe

Peak Elev=3,558.31' Inflow=58.65 cfs 8.663 af
 54.0" Round Culvert n=0.012 L=509.0' S=0.0138 '/' Outflow=58.65 cfs 8.663 af

Pond 409: Pipe

Peak Elev=3,565.00' Inflow=45.35 cfs 6.346 af
 42.0" Round Culvert n=0.012 L=291.0' S=0.0242 '/' Outflow=45.35 cfs 6.346 af

Pond 410: Pipe

Peak Elev=3,570.57' Inflow=39.98 cfs 5.595 af
 42.0" Round Culvert n=0.012 L=240.0' S=0.0238 '/' Outflow=39.98 cfs 5.595 af

Pond 411: Pipe

Peak Elev=3,577.52' Inflow=3.49 cfs 0.361 af
 24.0" Round Culvert n=0.012 L=259.0' S=0.0269 '/' Outflow=3.49 cfs 0.361 af

Pond 412: Pipe

Peak Elev=3,580.46' Storage=247 cf Inflow=36.93 cfs 5.234 af
 42.0" Round Culvert n=0.012 L=241.0' S=0.0193 '/' Outflow=36.93 cfs 5.234 af

Pond 413: Pipe

Peak Elev=3,579.96' Inflow=15.76 cfs 1.797 af
 36.0" Round Culvert n=0.012 L=250.0' S=0.0187 '/' Outflow=15.76 cfs 1.797 af

Pond 414: Pipe

Peak Elev=3,585.67' Inflow=15.76 cfs 1.797 af
 36.0" Round Culvert n=0.012 L=300.0' S=0.0187 '/' Outflow=15.76 cfs 1.797 af

Pond 415: Pipe

Peak Elev=3,592.31' Inflow=15.76 cfs 1.797 af
 36.0" Round Culvert n=0.012 L=350.0' S=0.0187 '/' Outflow=15.76 cfs 1.797 af

Pond 416: Pipe

Peak Elev=3,596.77' Inflow=15.76 cfs 1.797 af
 36.0" Round Culvert n=0.012 L=252.0' S=0.0173 '/' Outflow=15.76 cfs 1.797 af

Pond 417: Pipe

Peak Elev=3,602.50' Inflow=15.76 cfs 1.797 af
 36.0" Round Culvert n=0.012 L=297.0' S=0.0190 '/' Outflow=15.76 cfs 1.797 af

Pond 418: Pipe

Peak Elev=3,608.83' Inflow=15.76 cfs 1.797 af
 36.0" Round Culvert n=0.012 L=346.0' S=0.0180 '/' Outflow=15.76 cfs 1.797 af

Pond 419: Pipe

Peak Elev=3,619.66' Inflow=5.97 cfs 0.872 af
 36.0" Round Culvert n=0.012 L=451.0' S=0.0201 '/' Outflow=5.97 cfs 0.872 af

Pond 420: Pipe

Peak Elev=3,621.20' Inflow=5.97 cfs 0.872 af
 36.0" Round Culvert n=0.012 L=190.0' S=0.0072 '/' Outflow=5.97 cfs 0.872 af

Pond 421: Pipe

Peak Elev=3,625.42' Inflow=1.65 cfs 0.293 af
 21.0" Round Culvert n=0.012 L=157.0' S=0.0109 '/' Outflow=1.65 cfs 0.293 af

Pond 426: Pipe	Peak Elev=3,628.95' Inflow=1.25 cfs 0.238 af 27.0" Round Culvert n=0.012 L=542.0' S=0.0153 '/' Outflow=1.25 cfs 0.238 af
Pond 427: Pipe	Peak Elev=3,631.99' Inflow=0.61 cfs 0.102 af 21.0" Round Culvert n=0.012 L=157.0' S=0.0100 '/' Outflow=0.61 cfs 0.102 af
Pond 429: Pipe	Peak Elev=3,637.20' Inflow=0.69 cfs 0.136 af 21.0" Round Culvert n=0.012 L=539.0' S=0.0140 '/' Outflow=0.69 cfs 0.136 af
Pond 430: Pipe	Peak Elev=3,638.95' Inflow=0.69 cfs 0.136 af 21.0" Round Culvert n=0.012 L=157.0' S=0.0100 '/' Outflow=0.69 cfs 0.136 af
Pond 433: Pipe	Peak Elev=3,618.07' Inflow=11.60 cfs 0.925 af Primary=11.60 cfs 0.925 af Secondary=0.00 cfs 0.000 af Outflow=11.60 cfs 0.925 af
Pond 434: Pipe	Peak Elev=3,619.07' Inflow=11.42 cfs 0.891 af 21.0" Round Culvert n=0.012 L=171.0' S=0.0033 '/' Outflow=11.42 cfs 0.891 af
Pond 435: Pipe	Peak Elev=3,619.61' Inflow=11.42 cfs 0.891 af 21.0" Round Culvert n=0.012 L=138.0' S=0.0064 '/' Outflow=11.42 cfs 0.891 af
Pond 436: Pipe	Peak Elev=3,621.11' Inflow=11.42 cfs 0.891 af Primary=11.42 cfs 0.891 af Secondary=0.00 cfs 0.000 af Outflow=11.42 cfs 0.891 af
Pond 449: Pipe	Peak Elev=3,615.32' Inflow=14.86 cfs 0.904 af Primary=14.86 cfs 0.904 af Secondary=0.00 cfs 0.000 af Outflow=14.86 cfs 0.904 af
Pond 450: Pipe	Peak Elev=3,613.00' Inflow=14.86 cfs 0.904 af 21.0" Round Culvert n=0.012 L=170.0' S=0.0123 '/' Outflow=14.86 cfs 0.904 af
Pond 451: Pipe	Peak Elev=3,611.59' Inflow=14.86 cfs 0.904 af Primary=14.86 cfs 0.904 af Secondary=0.00 cfs 0.000 af Outflow=14.86 cfs 0.904 af
Pond 452: Pipe	Peak Elev=3,605.93' Inflow=2.94 cfs 0.364 af 24.0" Round Culvert n=0.012 L=197.0' S=0.0025 '/' Outflow=2.94 cfs 0.364 af
Pond 453: Pipe	Peak Elev=3,608.36' Inflow=1.94 cfs 0.233 af 21.0" Round Culvert n=0.012 L=171.0' S=0.0111 '/' Outflow=1.94 cfs 0.233 af
Pond 455: Pipe	Peak Elev=3,605.24' Inflow=7.59 cfs 0.783 af 18.0" Round Culvert n=0.012 L=57.0' S=0.0104 '/' Outflow=7.59 cfs 0.783 af
Pond 456: Pipe	Peak Elev=3,604.01' Inflow=7.59 cfs 0.783 af 21.0" Round Culvert n=0.012 L=170.0' S=0.0148 '/' Outflow=7.59 cfs 0.783 af
Pond 457: Pipe	Peak Elev=3,601.39' Inflow=8.63 cfs 0.915 af 24.0" Round Culvert n=0.012 L=283.0' S=0.0023 '/' Outflow=8.63 cfs 0.915 af
Pond 459: Pipe	Peak Elev=3,560.62' Inflow=5.54 cfs 1.016 af 48.0" Round Culvert n=0.012 L=344.0' S=0.0120 '/' Outflow=5.54 cfs 1.016 af

Pond 460: Pipe

Peak Elev=3,566.17' Inflow=5.54 cfs 1.016 af
 48.0" Round Culvert n=0.012 L=400.0' S=0.0139 '/' Outflow=5.54 cfs 1.016 af

Pond 462: Pipe

Peak Elev=3,583.34' Inflow=5.54 cfs 1.016 af
 24.0" Round Culvert n=0.012 L=145.0' S=0.1159 '/' Outflow=5.54 cfs 1.016 af

Pond 701: Pipe

Peak Elev=3,575.54' Inflow=8.00 cfs 2.619 af
 48.0" Round Culvert n=0.012 L=20.0' S=0.0870 '/' Outflow=8.00 cfs 2.619 af

Pond 702: Pipe

Peak Elev=3,573.65' Inflow=8.00 cfs 2.619 af
 42.0" Round Culvert n=0.012 L=266.0' S=0.0874 '/' Outflow=8.00 cfs 2.619 af

Pond 703: (new Pond)

Peak Elev=3,550.44' Inflow=8.00 cfs 2.619 af
 36.0" Round Culvert n=0.012 L=1,006.0' S=0.0874 '/' Outflow=8.00 cfs 2.619 af

Pond 704: (new Pond)

Peak Elev=3,462.35' Inflow=8.00 cfs 2.619 af
 78.0" Round Culvert n=0.012 L=108.0' S=0.0200 '/' Outflow=8.00 cfs 2.619 af

Pond Pond A: Pond A

Peak Elev=3,398.49' Storage=10.626 af Inflow=195.62 cfs 22.355 af
 Primary=8.82 cfs 17.685 af Secondary=47.14 cfs 4.640 af Outflow=55.96 cfs 22.325 af

Pond Pond B: Pond B

Peak Elev=3,390.07' Storage=6.584 af Inflow=55.96 cfs 22.325 af
 Primary=7.71 cfs 22.307 af Secondary=0.00 cfs 0.000 af Outflow=7.71 cfs 22.307 af

Pond Pond C: Pond C

Peak Elev=3,379.35' Storage=1.099 af Inflow=7.71 cfs 22.307 af
 Primary=7.71 cfs 22.235 af Secondary=0.00 cfs 0.000 af Outflow=7.71 cfs 22.235 af

Pond Pond D: Pond D

Peak Elev=3,434.43' Storage=0.024 af Inflow=3.26 cfs 0.435 af
 Primary=2.06 cfs 0.435 af Secondary=0.00 cfs 0.000 af Outflow=2.06 cfs 0.435 af

Pond Pond E: Pond E

Peak Elev=3,539.86' Storage=2.042 af Inflow=60.00 cfs 8.935 af
 Primary=22.25 cfs 8.935 af Secondary=0.00 cfs 0.000 af Outflow=22.25 cfs 8.935 af

Total Runoff Area = 3,980.000 ac Runoff Volume = 94.218 af Average Runoff Depth = 0.28"
91.66% Pervious = 3,648.000 ac 8.34% Impervious = 332.000 ac

APPENDIX F

HydroCAD Summary
100-Year, 24-Hour Storm

Time span=0.00-96.00 hrs, dt=0.01 hrs, 9601 points
 Runoff by SCS TR-20 method, UH=SCS
 Reach routing by Stor-Ind+Trans method - Pond routing by Stor-Ind method

Subcatchment A: Saddle Club East

Runoff Area=49.000 ac 2.04% Impervious Runoff Depth=0.99"
 Flow Length=2,646' Tc=43.5 min CN=71 Runoff=29.18 cfs 4.035 af

Subcatchment B: Saddle Club West

Runoff Area=67.000 ac 5.97% Impervious Runoff Depth=1.04"
 Flow Length=3,022' Tc=49.7 min CN=72 Runoff=38.89 cfs 5.825 af

Subcatchment C: Tumbleweed

Runoff Area=92.000 ac 8.70% Impervious Runoff Depth=1.04"
 Flow Length=2,860' Tc=37.3 min CN=72 Runoff=65.54 cfs 7.998 af

Subcatchment D: Moon Valley

Runoff Area=192.000 ac 13.02% Impervious Runoff Depth=1.16"
 Flow Length=5,340' Tc=75.3 min CN=74 Runoff=92.77 cfs 18.525 af

Subcatchment E: Sun Valley

Runoff Area=207.000 ac 6.28% Impervious Runoff Depth=1.04"
 Flow Length=5,221' Tc=80.8 min CN=72 Runoff=83.49 cfs 17.995 af

Subcatchment F: Prickly Pear

Runoff Area=208.000 ac 4.33% Impervious Runoff Depth=0.99"
 Flow Length=6,238' Tc=88.1 min CN=71 Runoff=73.02 cfs 17.130 af

Subcatchment G: TW G

Runoff Area=247.000 ac 2.83% Impervious Runoff Depth=0.99"
 Flow Length=5,669' Tc=56.8 min CN=71 Runoff=120.79 cfs 20.341 af

Subcatchment H: 10L end

Runoff Area=101.000 ac 2.97% Impervious Runoff Depth=0.99"
 Flow Length=6,495' Tc=88.7 min CN=71 Runoff=35.56 cfs 8.318 af

Subcatchment I-a: (new Subcat)

Runoff Area=154.000 ac 0.65% Impervious Runoff Depth=0.93"
 Flow Length=4,000' Tc=75.5 min CN=70 Runoff=56.35 cfs 11.997 af

Subcatchment I-b: west of 10L

Runoff Area=300.000 ac 3.33% Impervious Runoff Depth=0.99"
 Flow Length=6,950' Slope=0.0250 '/' Tc=48.8 min CN=71 Runoff=164.60 cfs 24.706 af

Subcatchment J: Old Ranch

Runoff Area=1,543.000 ac 0.00% Impervious Runoff Depth=0.93"
 Flow Length=16,574' Tc=308.6 min CN=70 Runoff=198.23 cfs 120.203 af

Subcatchment K: Rim Xing 1

Runoff Area=74.000 ac 2.70% Impervious Runoff Depth=0.99"
 Flow Length=4,400' Slope=0.0200 '/' Tc=94.0 min CN=71 Runoff=24.64 cfs 6.094 af

Subcatchment L: Retention Pond

Runoff Area=97.000 ac 0.00% Impervious Runoff Depth=0.93"
 Flow Length=3,889' Slope=0.0200 '/' Tc=85.4 min CN=70 Runoff=32.50 cfs 7.556 af

Subcatchment M: Rim Xing 2

Runoff Area=25.000 ac 20.00% Impervious Runoff Depth=1.28"
 Flow Length=1,638' Tc=48.8 min CN=76 Runoff=18.89 cfs 2.664 af

Subcatchment N: Rim Xing 3

Runoff Area=5.000 ac 0.00% Impervious Runoff Depth=0.93"
 Flow Length=1,044' Tc=40.7 min CN=70 Runoff=2.91 cfs 0.390 af

Subcatchment O: Rim Xing 4

Runoff Area=5.000 ac 0.00% Impervious Runoff Depth=0.93"
 Flow Length=1,108' Slope=0.0140 '/' Tc=9.7 min CN=70 Runoff=6.97 cfs 0.390 af

Subcatchment S101: Subcat

Runoff Area=24.000 ac 16.67% Impervious Runoff Depth=1.22"
 Flow Length=1,303' Tc=12.6 min CN=75 Runoff=40.35 cfs 2.435 af

Subcatchment S102: Subcat

Runoff Area=19.000 ac 31.58% Impervious Runoff Depth=1.47"
 Flow Length=2,563' Tc=23.9 min CN=79 Runoff=27.62 cfs 2.333 af

Subcatchment S103: Subcat

Runoff Area=16.000 ac 43.75% Impervious Runoff Depth=1.68"
 Flow Length=1,610' Tc=17.8 min CN=82 Runoff=31.93 cfs 2.245 af

Subcatchment S104: Subcat

Runoff Area=27.000 ac 51.85% Impervious Runoff Depth=1.91"
 Flow Length=1,763' Tc=13.8 min CN=85 Runoff=69.52 cfs 4.303 af

Subcatchment S105: Subcat

Runoff Area=14.000 ac 42.86% Impervious Runoff Depth=1.68"
 Flow Length=1,480' Tc=14.0 min CN=82 Runoff=31.60 cfs 1.965 af

Subcatchment S106: Subcat

Runoff Area=6.000 ac 100.00% Impervious Runoff Depth=3.15"
 Flow Length=910' Tc=7.0 min CN=98 Runoff=27.80 cfs 1.573 af

Subcatchment S107: Subcat

Runoff Area=7.000 ac 100.00% Impervious Runoff Depth=3.15"
 Flow Length=676' Tc=5.7 min CN=98 Runoff=33.80 cfs 1.836 af

Subcatchment S108: Subcat

Runoff Area=9.000 ac 100.00% Impervious Runoff Depth=3.15"
 Flow Length=803' Slope=0.0200 '/' Tc=6.7 min CN=98 Runoff=42.10 cfs 2.360 af

Subcatchment S109: Subcat

Runoff Area=6.000 ac 100.00% Impervious Runoff Depth=3.15"
 Flow Length=564' Tc=5.2 min CN=98 Runoff=29.43 cfs 1.573 af

Subcatchment S110: Subcat

Runoff Area=14.000 ac 92.86% Impervious Runoff Depth=2.93"
 Flow Length=1,816' Tc=17.2 min CN=96 Runoff=45.95 cfs 3.415 af

Subcatchment S111: Subcat

Runoff Area=46.000 ac 54.35% Impervious Runoff Depth=1.91"
 Flow Length=3,618' Tc=28.9 min CN=85 Runoff=78.33 cfs 7.330 af

Subcatchment S112: Subcat

Runoff Area=23.000 ac 4.35% Impervious Runoff Depth=0.99"
 Flow Length=3,317' Tc=21.5 min CN=71 Runoff=22.45 cfs 1.894 af

Subcatchment S113: Subcat

Runoff Area=26.000 ac 96.15% Impervious Runoff Depth=3.04"
 Flow Length=2,541' Tc=19.4 min CN=97 Runoff=81.81 cfs 6.576 af

Subcatchment S114: Subcat

Runoff Area=17.000 ac 82.35% Impervious Runoff Depth=2.62"
 Flow Length=1,541' Tc=13.6 min CN=93 Runoff=57.83 cfs 3.710 af

Subcatchment S115: Subcat

Runoff Area=14.000 ac 21.43% Impervious Runoff Depth=1.28"
 Flow Length=1,114' Tc=12.7 min CN=76 Runoff=24.73 cfs 1.492 af

Subcatchment S116: Subcat

Runoff Area=32.000 ac 31.25% Impervious Runoff Depth=1.47"
 Flow Length=2,438' Tc=22.8 min CN=79 Runoff=47.88 cfs 3.929 af

Subcatchment S117: Subcat

Runoff Area=12.000 ac 33.33% Impervious Runoff Depth=1.47"
 Flow Length=926' Tc=11.1 min CN=79 Runoff=26.16 cfs 1.473 af

Subcatchment S118: Subcat

Runoff Area=7.000 ac 42.86% Impervious Runoff Depth=1.68"
 Flow Length=1,011' Tc=9.1 min CN=82 Runoff=18.78 cfs 0.982 af

Subcatchment S119: Subcat

Runoff Area=14.000 ac 35.71% Impervious Runoff Depth=1.54"
 Flow Length=1,540' Tc=13.3 min CN=80 Runoff=29.54 cfs 1.799 af

Subcatchment S120: Subcat

Runoff Area=14.000 ac 42.86% Impervious Runoff Depth=1.68"
 Flow Length=1,032' Tc=12.3 min CN=82 Runoff=33.53 cfs 1.965 af

Subcatchment S121: Subcat

Runoff Area=12.000 ac 41.67% Impervious Runoff Depth=1.68"
 Flow Length=1,945' Tc=17.3 min CN=82 Runoff=24.35 cfs 1.684 af

Subcatchment S122: Subcat

Runoff Area=11.000 ac 63.64% Impervious Runoff Depth=2.16"
 Flow Length=1,214' Tc=30.6 min CN=88 Runoff=20.32 cfs 1.980 af

Subcatchment S123: Subcat

Runoff Area=43.000 ac 18.60% Impervious Runoff Depth=1.22"
 Flow Length=2,468' Tc=40.3 min CN=75 Runoff=35.24 cfs 4.363 af

Subcatchment S124: Subcat

Runoff Area=8.000 ac 37.50% Impervious Runoff Depth=1.61"
 Flow Length=838' Tc=28.7 min CN=81 Runoff=11.41 cfs 1.075 af

Subcatchment S125: Subcat

Runoff Area=6.000 ac 50.00% Impervious Runoff Depth=1.83"
 Flow Length=410' Tc=4.6 min CN=84 Runoff=20.57 cfs 0.917 af

Subcatchment S126: Subcat

Runoff Area=23.000 ac 34.78% Impervious Runoff Depth=1.54"
 Flow Length=1,497' Tc=38.3 min CN=80 Runoff=25.62 cfs 2.955 af

Subcatchment S127: Subcat

Runoff Area=44.000 ac 11.36% Impervious Runoff Depth=1.10"
 Flow Length=2,892' Tc=41.3 min CN=73 Runoff=31.19 cfs 4.032 af

Subcatchment S128: Subcat

Runoff Area=4.000 ac 25.00% Impervious Runoff Depth=1.34"
 Flow Length=941' Tc=31.9 min CN=77 Runoff=4.32 cfs 0.447 af

Subcatchment S129: Subcat

Runoff Area=13.000 ac 53.85% Impervious Runoff Depth=1.91"
 Flow Length=1,221' Tc=31.4 min CN=85 Runoff=20.96 cfs 2.072 af

Subcatchment S130: Subcat

Runoff Area=6.000 ac 33.33% Impervious Runoff Depth=1.47"
 Flow Length=1,242' Tc=33.1 min CN=79 Runoff=7.04 cfs 0.737 af

Subcatchment S131: Subcat

Runoff Area=20.000 ac 40.00% Impervious Runoff Depth=1.61"
 Flow Length=1,656' Tc=11.9 min CN=81 Runoff=46.44 cfs 2.687 af

Subcatchment S132: Subcat

Runoff Area=23.000 ac 30.43% Impervious Runoff Depth=1.47"
 Flow Length=2,296' Tc=17.5 min CN=79 Runoff=40.26 cfs 2.824 af

Subcatchment S133: Subcat

Runoff Area=14.000 ac 7.14% Impervious Runoff Depth=1.04"
 Flow Length=2,027' Tc=36.1 min CN=72 Runoff=10.21 cfs 1.217 af

Subcatchment S134: Subcat

Runoff Area=6.000 ac 0.00% Impervious Runoff Depth=0.93"
 Flow Length=540' Tc=25.9 min CN=70 Runoff=4.81 cfs 0.467 af

Subcatchment S135: Subcat	Runoff Area=8.000 ac 0.00% Impervious Runoff Depth=0.93" Flow Length=1,582' Tc=33.7 min CN=70 Runoff=5.35 cfs 0.623 af
Subcatchment S136: Subcat	Runoff Area=7.000 ac 42.86% Impervious Runoff Depth=1.68" Flow Length=677' Tc=27.4 min CN=82 Runoff=10.82 cfs 0.982 af
Subcatchment S137: Subcat	Runoff Area=2.000 ac 0.00% Impervious Runoff Depth=0.93" Flow Length=534' Tc=6.0 min CN=70 Runoff=3.26 cfs 0.156 af
Subcatchment S138: Subcat	Runoff Area=4.000 ac 25.00% Impervious Runoff Depth=1.34" Flow Length=540' Tc=6.7 min CN=77 Runoff=9.36 cfs 0.447 af
Subcatchment S139: Subcat	Runoff Area=13.000 ac 7.69% Impervious Runoff Depth=1.04" Flow Length=1,350' Tc=19.0 min CN=72 Runoff=14.62 cfs 1.130 af
Reach 2R: Reach	Avg. Flow Depth=0.06' Max Vel=0.80 fps Inflow=21.01 cfs 0.527 af n=0.016 L=600.0' S=0.0034 '/' Capacity=227.83 cfs Outflow=14.20 cfs 0.527 af
Reach 3R: Reach	Avg. Flow Depth=0.65' Max Vel=2.25 fps Inflow=77.09 cfs 3.002 af n=0.025 L=2,000.0' S=0.0064 '/' Capacity=952.03 cfs Outflow=47.39 cfs 3.002 af
Reach 4R: Reach	Avg. Flow Depth=0.17' Max Vel=1.06 fps Inflow=12.03 cfs 0.066 af n=0.025 L=1,850.0' S=0.0087 '/' Capacity=1,105.76 cfs Outflow=1.49 cfs 0.066 af
Reach 7R: Reach	Avg. Flow Depth=0.59' Max Vel=2.88 fps Inflow=42.51 cfs 1.938 af n=0.025 L=1,200.0' S=0.0119 '/' Capacity=987.09 cfs Outflow=38.21 cfs 1.938 af
Reach 8R: Reach	Avg. Flow Depth=0.03' Max Vel=1.37 fps Inflow=22.91 cfs 0.395 af n=0.016 L=1,274.0' S=0.0251 '/' Capacity=616.42 cfs Outflow=11.82 cfs 0.395 af
Reach 9R: Reach	Avg. Flow Depth=0.00' Max Vel=0.19 fps Inflow=1.61 cfs 0.018 af n=0.025 L=1,200.0' S=0.0225 '/' Capacity=373.13 cfs Outflow=0.11 cfs 0.018 af
Reach 10R: Reach	Avg. Flow Depth=0.05' Max Vel=1.24 fps Inflow=35.92 cfs 1.124 af n=0.022 L=1,925.0' S=0.0201 '/' Capacity=400.43 cfs Outflow=18.02 cfs 1.124 af
Reach 11R: Reach	Avg. Flow Depth=0.01' Max Vel=0.56 fps Inflow=1.95 cfs 0.167 af n=0.022 L=800.0' S=0.0285 '/' Capacity=477.70 cfs Outflow=1.79 cfs 0.167 af
Reach 12R: Reach	Avg. Flow Depth=0.01' Max Vel=0.46 fps Inflow=3.96 cfs 0.109 af n=0.022 L=1,175.0' S=0.0266 '/' Capacity=461.24 cfs Outflow=1.18 cfs 0.109 af
Reach 13R: Reach	Avg. Flow Depth=0.01' Max Vel=0.68 fps Inflow=2.20 cfs 0.364 af n=0.013 L=380.0' S=0.0147 '/' Capacity=580.94 cfs Outflow=2.20 cfs 0.364 af
Reach 14R: Reach 24.0" Round Pipe	Avg. Flow Depth=1.33' Max Vel=10.22 fps Inflow=24.35 cfs 1.684 af n=0.012 L=2,500.0' S=0.0140 '/' Capacity=29.04 cfs Outflow=22.66 cfs 1.684 af
Reach 15R: Reach	Avg. Flow Depth=0.27' Max Vel=1.60 fps Inflow=7.94 cfs 0.391 af n=0.025 L=2,105.0' S=0.0103 '/' Capacity=189.63 cfs Outflow=5.94 cfs 0.391 af

Reach 16R: Reach	Avg. Flow Depth=0.70' Max Vel=3.13 fps Inflow=52.72 cfs 1.544 af n=0.022 L=1,950.0' S=0.0087 '/' Capacity=628.29 cfs Outflow=38.81 cfs 1.544 af
Reach 17R: Reach	Avg. Flow Depth=0.02' Max Vel=22.22 fps Inflow=57.53 cfs 6.096 af n=0.016 L=2,700.0' S=0.0589 '/' Capacity=15,111,117.63 cfs Outflow=56.90 cfs 6.096 af
Reach 18R: Reach	Avg. Flow Depth=2.07' Max Vel=17.78 fps Inflow=116.99 cfs 24.621 af 48.0" Round Pipe n=0.012 L=50.0' S=0.0200 '/' Capacity=220.07 cfs Outflow=116.99 cfs 24.621 af
Reach 19R: (new Reach)	Avg. Flow Depth=0.00' Max Vel=23.08 fps Inflow=3.40 cfs 1.894 af n=0.016 L=2,973.0' S=0.0633 '/' Capacity=11,441,841.62 cfs Outflow=3.40 cfs 1.894 af
Reach 20R: (new Reach)	Avg. Flow Depth=1.75' Max Vel=16.48 fps Inflow=86.89 cfs 19.889 af 48.0" Round Pipe n=0.012 L=50.0' S=0.0200 '/' Capacity=220.07 cfs Outflow=86.88 cfs 19.889 af
Reach 30R: Reach	Avg. Flow Depth=0.41' Max Vel=2.97 fps Inflow=40.17 cfs 3.068 af n=0.025 L=910.0' S=0.0205 '/' Capacity=401.59 cfs Outflow=38.09 cfs 3.068 af
Reach 31R: Reach	Avg. Flow Depth=0.28' Max Vel=2.16 fps Inflow=11.69 cfs 1.184 af n=0.025 L=1,300.0' S=0.0185 '/' Capacity=751.64 cfs Outflow=8.23 cfs 1.184 af
Reach 32R: Reach	Avg. Flow Depth=0.50' Max Vel=3.22 fps Inflow=50.75 cfs 3.173 af n=0.025 L=1,455.0' S=0.0185 '/' Capacity=751.29 cfs Outflow=40.81 cfs 3.173 af
Reach 33R: Reach	Avg. Flow Depth=0.07' Max Vel=2.10 fps Inflow=19.89 cfs 0.386 af n=0.016 L=800.0' S=0.0188 '/' Capacity=193.73 cfs Outflow=16.13 cfs 0.386 af
Reach 40R: Reach	Avg. Flow Depth=0.08' Max Vel=7.99 fps Inflow=56.35 cfs 11.997 af n=0.030 L=7,250.0' S=0.0275 '/' Capacity=4,347,964.77 cfs Outflow=51.04 cfs 11.997 af
Reach 41R: Reach	Avg. Flow Depth=0.04' Max Vel=9.74 fps Inflow=42.49 cfs 29.106 af n=0.030 L=5,852.0' S=0.0404 '/' Capacity=5,730,418.04 cfs Outflow=42.38 cfs 29.106 af
Reach 42R: Reach	Avg. Flow Depth=2.96' Max Vel=19.81 fps Inflow=197.40 cfs 65.809 af 48.0" Round Pipe n=0.012 L=50.0' S=0.0200 '/' Capacity=220.07 cfs Outflow=197.39 cfs 65.809 af
Pond 101: Pipe	Peak Elev=3,205.01' Inflow=35.50 cfs 48.055 af 36.0" Round Culvert n=0.012 L=109.0' S=0.0927 '/' Outflow=35.50 cfs 48.055 af
Pond 102: Pipe	Peak Elev=3,207.47' Inflow=35.50 cfs 48.055 af 36.0" Round Culvert n=0.012 L=256.0' S=0.0085 '/' Outflow=35.50 cfs 48.055 af
Pond 103: Pipe	Peak Elev=3,210.61' Inflow=35.50 cfs 48.055 af 36.0" Round Culvert n=0.012 L=125.0' S=0.0274 '/' Outflow=35.50 cfs 48.055 af
Pond 104: Pipe	Peak Elev=3,227.68' Inflow=35.50 cfs 48.055 af 36.0" Round Culvert n=0.012 L=366.0' S=0.0466 '/' Outflow=35.50 cfs 48.055 af
Pond 105: Pipe	Peak Elev=3,348.96' Inflow=35.50 cfs 48.055 af 24.0" Round Culvert n=0.012 L=676.0' S=0.1772 '/' Outflow=35.50 cfs 48.055 af

Pond 106: Pipe

Peak Elev=3,365.66' Inflow=35.50 cfs 48.055 af
 24.0" Round Culvert n=0.012 L=645.0' S=0.0259 '/' Outflow=35.50 cfs 48.055 af

Pond 107: Pipe

Peak Elev=3,417.69' Inflow=292.18 cfs 54.278 af
 60.0" Round Culvert n=0.012 L=700.0' S=0.0195 '/' Outflow=292.18 cfs 54.278 af

Pond 108: Pipe

Peak Elev=3,433.81' Inflow=292.18 cfs 54.278 af
 54.0" Round Culvert n=0.012 L=400.0' S=0.0352 '/' Outflow=292.18 cfs 54.278 af

Pond 109: Pipe

Peak Elev=3,439.25' Inflow=251.92 cfs 51.843 af
 60.0" Round Culvert n=0.012 L=300.0' S=0.0286 '/' Outflow=251.92 cfs 51.843 af

Pond 110: Pipe

Peak Elev=3,448.59' Inflow=251.92 cfs 51.843 af
 66.0" Round Culvert n=0.012 L=374.0' S=0.0271 '/' Outflow=251.92 cfs 51.843 af

Pond 111: Pipe

Peak Elev=3,453.96' Inflow=238.34 cfs 43.367 af
 60.0" Round Culvert n=0.012 L=200.0' S=0.0246 '/' Outflow=238.34 cfs 43.367 af

Pond 112: Pipe

Peak Elev=3,469.72' Inflow=238.34 cfs 43.367 af
 60.0" Round Culvert n=0.012 L=390.0' S=0.0404 '/' Outflow=238.34 cfs 43.367 af

Pond 113: Pipe

Peak Elev=3,489.61' Inflow=126.32 cfs 25.799 af
 60.0" Round Culvert n=0.012 L=311.0' S=0.0100 '/' Outflow=126.32 cfs 25.799 af

Pond 114: Pipe

Peak Elev=3,494.00' Inflow=126.32 cfs 25.799 af
 60.0" Round Culvert n=0.012 L=449.0' S=0.0101 '/' Outflow=126.32 cfs 25.799 af

Pond 115: Pipe

Peak Elev=3,499.51' Inflow=126.32 cfs 25.799 af
 54.0" Round Culvert n=0.012 L=364.0' S=0.0141 '/' Outflow=126.32 cfs 25.799 af

Pond 116: Pipe

Peak Elev=3,502.97' Inflow=126.32 cfs 25.799 af
 60.0" Round Culvert n=0.012 L=376.0' S=0.0088 '/' Outflow=126.32 cfs 25.799 af

Pond 117: Pipe

Peak Elev=3,506.80' Inflow=79.97 cfs 12.803 af
 42.0" Round Culvert n=0.012 L=457.0' S=0.0089 '/' Outflow=79.97 cfs 12.803 af

Pond 118: Pipe

Peak Elev=3,509.49' Inflow=79.97 cfs 12.803 af
 42.0" Round Culvert n=0.012 L=343.0' S=0.0055 '/' Outflow=79.97 cfs 12.803 af

Pond 119: Pipe

Peak Elev=3,511.89' Inflow=79.97 cfs 12.803 af
 42.0" Round Culvert n=0.012 L=401.0' S=0.0069 '/' Outflow=79.97 cfs 12.803 af

Pond 120: Pipe

Peak Elev=3,514.39' Inflow=79.97 cfs 12.803 af
 42.0" Round Culvert n=0.012 L=360.0' S=0.0069 '/' Outflow=79.97 cfs 12.803 af

Pond 121: Pipe

Peak Elev=3,518.82' Inflow=79.97 cfs 12.803 af
 42.0" Round Culvert n=0.012 L=381.0' S=0.0134 '/' Outflow=79.97 cfs 12.803 af

Pond 122: Pipe

Peak Elev=3,521.59' Inflow=79.97 cfs 12.803 af
 42.0" Round Culvert n=0.012 L=223.0' S=0.0110 '/' Outflow=79.97 cfs 12.803 af

Pond 123: Pipe	Peak Elev=3,525.20' Inflow=79.97 cfs 12.803 af 42.0" Round Culvert n=0.012 L=340.0' S=0.0111 '/' Outflow=79.97 cfs 12.803 af
Pond 124: Pipe	Peak Elev=3,529.14' Inflow=18.78 cfs 0.982 af 24.0" Round Culvert n=0.012 L=289.0' S=0.0036 '/' Outflow=18.78 cfs 0.982 af
Pond 125: Pipe	Peak Elev=3,436.42' Inflow=40.35 cfs 2.435 af 30.0" Round Culvert n=0.012 L=299.0' S=0.0235 '/' Outflow=40.35 cfs 2.435 af
Pond 126: Pipe	Peak Elev=3,439.39' Inflow=40.35 cfs 2.435 af 30.0" Round Culvert n=0.012 L=271.0' S=0.0100 '/' Outflow=40.35 cfs 2.435 af
Pond 127: Pipe	Peak Elev=3,442.72' Inflow=40.35 cfs 2.435 af 30.0" Round Culvert n=0.012 L=200.0' S=0.0100 '/' Outflow=40.35 cfs 2.435 af
Pond 128: Pipe	Peak Elev=3,473.29' Inflow=14.81 cfs 8.476 af 30.0" Round Culvert n=0.012 L=567.0' S=0.0500 '/' Outflow=14.81 cfs 8.476 af
Pond 129: Pipe	Peak Elev=3,473.98' Inflow=14.81 cfs 8.476 af 30.0" Round Culvert n=0.012 L=40.0' S=0.0075 '/' Outflow=14.81 cfs 8.476 af
Pond 130: Pipe	Peak Elev=3,475.11' Inflow=14.81 cfs 8.476 af 30.0" Round Culvert n=0.012 L=550.0' S=0.0006 '/' Outflow=14.81 cfs 8.476 af
Pond 131: Pipe	Peak Elev=3,477.54' Inflow=14.81 cfs 8.476 af 30.0" Round Culvert n=0.012 L=192.0' S=0.0188 '/' Outflow=14.81 cfs 8.476 af
Pond 132: Pipe/DP	Peak Elev=3,488.09' Storage=189,600 cf Inflow=119.71 cfs 9.190 af Primary=14.81 cfs 8.476 af Secondary=15.62 cfs 0.110 af Outflow=30.43 cfs 8.587 af
Pond 133: Pipe	Peak Elev=3,488.47' Inflow=10.91 cfs 1.718 af 18.0" Round Culvert n=0.012 L=269.0' S=0.0055 '/' Outflow=10.91 cfs 1.718 af
Pond 134: Pipe	Peak Elev=3,490.41' Inflow=31.93 cfs 2.245 af Primary=10.91 cfs 1.718 af Secondary=21.01 cfs 0.527 af Outflow=31.93 cfs 2.245 af
Pond 135: Pipe	Peak Elev=3,514.24' Inflow=172.83 cfs 18.925 af Primary=114.26 cfs 17.568 af Secondary=58.57 cfs 1.357 af Outflow=172.83 cfs 18.925 af
Pond 138: Pipe	Peak Elev=3,503.15' Inflow=184.85 cfs 18.991 af Primary=172.83 cfs 18.925 af Secondary=12.03 cfs 0.066 af Outflow=184.85 cfs 18.991 af
Pond 139: Pipe	Peak Elev=3,506.42' Inflow=44.22 cfs 3.903 af Primary=15.29 cfs 2.257 af Secondary=28.93 cfs 1.645 af Outflow=44.22 cfs 3.903 af
Pond 140: Pipe	Peak Elev=3,507.95' Inflow=172.69 cfs 16.734 af 42.0" Round Culvert n=0.012 L=213.0' S=0.0176 '/' Outflow=172.69 cfs 16.734 af
Pond 141: Pipe	Peak Elev=3,515.46' Inflow=225.41 cfs 18.277 af Primary=172.69 cfs 16.734 af Secondary=52.72 cfs 1.544 af Outflow=225.41 cfs 18.277 af

Pond 142: Pipe	Peak Elev=3,508.59' Inflow=107.47 cfs 9.834 af 42.0" Round Culvert n=0.012 L=244.0' S=0.0188 '/' Outflow=107.47 cfs 9.834 af
Pond 143: Pipe	Peak Elev=3,518.38' Inflow=107.47 cfs 9.834 af 42.0" Round Culvert n=0.012 L=349.0' S=0.0281 '/' Outflow=107.47 cfs 9.834 af
Pond 144: Pipe	Peak Elev=3,524.26' Inflow=107.47 cfs 9.834 af 42.0" Round Culvert n=0.012 L=473.0' S=0.0101 '/' Outflow=107.47 cfs 9.834 af
Pond 145: Pipe	Peak Elev=3,529.92' Inflow=107.47 cfs 9.834 af 42.0" Round Culvert n=0.012 L=529.0' S=0.0128 '/' Outflow=107.47 cfs 9.834 af
Pond 146: Pipe	Peak Elev=3,533.46' Inflow=99.68 cfs 8.260 af 42.0" Round Culvert n=0.012 L=369.0' S=0.0094 '/' Outflow=99.68 cfs 8.260 af
Pond 147: Pipe	Peak Elev=3,540.55' Inflow=99.68 cfs 8.260 af 42.0" Round Culvert n=0.012 L=297.0' S=0.0253 '/' Outflow=99.68 cfs 8.260 af
Pond 148: Pipe	Peak Elev=3,543.30' Inflow=99.68 cfs 8.260 af 42.0" Round Culvert n=0.012 L=201.0' S=0.0130 '/' Outflow=99.68 cfs 8.260 af
Pond 149: Pipe	Peak Elev=3,554.56' Inflow=99.68 cfs 8.260 af 42.0" Round Culvert n=0.012 L=134.0' S=0.0851 '/' Outflow=99.68 cfs 8.260 af
Pond 150: Pipe	Peak Elev=3,558.16' Inflow=99.68 cfs 8.260 af 42.0" Round Culvert n=0.012 L=270.0' S=0.0075 '/' Outflow=99.68 cfs 8.260 af
Pond 151: Pipe	Peak Elev=3,558.75' Inflow=99.68 cfs 8.260 af 42.0" Round Culvert n=0.012 L=100.0' S=0.0073 '/' Outflow=99.68 cfs 8.260 af
Pond 152: Pipe	Peak Elev=3,559.73' Inflow=99.68 cfs 8.260 af 42.0" Round Culvert n=0.012 L=97.0' S=0.0038 '/' Outflow=99.68 cfs 8.260 af
Pond 153: Pipe	Peak Elev=3,564.70' Inflow=99.68 cfs 8.260 af 42.0" Round Culvert n=0.012 L=73.0' S=0.0040 '/' Outflow=99.68 cfs 8.260 af
Pond 200: Pipe	Peak Elev=3,508.10' Inflow=67.53 cfs 4.141 af Primary=67.53 cfs 4.141 af Secondary=0.00 cfs 0.000 af Outflow=67.53 cfs 4.141 af
Pond 201: Pipe	Peak Elev=3,510.28' Inflow=67.53 cfs 4.141 af 36.0" Round Culvert n=0.012 L=349.0' S=0.0108 '/' Outflow=67.53 cfs 4.141 af
Pond 202: Pipe	Peak Elev=3,519.91' Inflow=67.53 cfs 4.141 af 36.0" Round Culvert n=0.012 L=516.0' S=0.0145 '/' Outflow=67.53 cfs 4.141 af
Pond 203: Pipe	Peak Elev=3,524.58' Inflow=67.53 cfs 4.141 af 36.0" Round Culvert n=0.012 L=201.0' S=0.0182 '/' Outflow=67.53 cfs 4.141 af
Pond 204: Pipe	Peak Elev=3,533.34' Inflow=33.80 cfs 1.836 af 24.0" Round Culvert n=0.012 L=258.0' S=0.0111 '/' Outflow=33.80 cfs 1.836 af

Pond 207: Pipe

Peak Elev=3,559.13' Inflow=27.80 cfs 1.573 af
 15.0" Round Culvert n=0.010 L=162.0' S=0.0048 '/' Outflow=27.80 cfs 1.573 af

Pond 208: Pipe

Peak Elev=3,526.01' Inflow=33.77 cfs 2.305 af
 36.0" Round Culvert n=0.012 L=140.0' S=0.0111 '/' Outflow=33.77 cfs 2.305 af

Pond 209: Pipe

Peak Elev=3,529.87' Inflow=33.77 cfs 2.305 af
 24.0" Round Culvert n=0.012 L=64.0' S=0.0233 '/' Outflow=33.77 cfs 2.305 af

Pond 210: Pipe

Peak Elev=3,533.76' Inflow=33.77 cfs 2.305 af
 24.0" Round Culvert n=0.012 L=190.0' S=0.0140 '/' Outflow=33.77 cfs 2.305 af

Pond 211: Pipe

Peak Elev=3,536.54' Inflow=42.10 cfs 2.360 af
 Primary=33.77 cfs 2.305 af Secondary=8.33 cfs 0.055 af Outflow=42.10 cfs 2.360 af

Pond 212: Pipe

Peak Elev=3,539.77' Inflow=42.10 cfs 2.360 af
 24.0" Round Culvert n=0.012 L=100.0' S=0.0198 '/' Outflow=42.10 cfs 2.360 af

Pond 213: Pipe

Peak Elev=3,541.75' Inflow=42.10 cfs 2.360 af
 24.0" Round Culvert n=0.012 L=100.0' S=0.0202 '/' Outflow=42.10 cfs 2.360 af

Pond 214: Pipe

Peak Elev=3,550.08' Inflow=42.10 cfs 2.360 af
 24.0" Round Culvert n=0.012 L=100.0' S=0.0194 '/' Outflow=42.10 cfs 2.360 af

Pond 300: Pipe

Peak Elev=3,433.00' Inflow=0.00 cfs 0.000 af
 48.0" Round Culvert n=0.012 L=56.0' S=0.0105 '/' Outflow=0.00 cfs 0.000 af

Pond 311: Pipe

Peak Elev=3,542.85' Inflow=69.87 cfs 12.212 af
 Primary=61.93 cfs 11.821 af Secondary=7.94 cfs 0.391 af Outflow=69.87 cfs 12.212 af

Pond 312: Pipe/DP

Peak Elev=3,544.78' Storage=35,538 cf Inflow=101.52 cfs 12.189 af
 36.0" Round Culvert n=0.025 L=137.0' S=0.0129 '/' Outflow=69.87 cfs 12.212 af

Pond 313: Pipe

Peak Elev=3,544.09' Inflow=37.45 cfs 6.511 af
 36.0" Round Culvert n=0.025 L=362.0' S=0.0152 '/' Outflow=37.45 cfs 6.511 af

Pond 314: Pipe/DP

Peak Elev=3,550.63' Storage=22,348 cf Inflow=62.93 cfs 3.763 af
 30.0" Round Culvert n=0.025 L=350.0' S=0.0094 '/' Outflow=28.81 cfs 3.754 af

Pond 315: Pipe

Peak Elev=3,554.08' Inflow=33.53 cfs 1.965 af
 Primary=27.39 cfs 1.919 af Secondary=6.14 cfs 0.046 af Outflow=33.53 cfs 1.965 af

Pond 316: Pipe

Peak Elev=3,558.80' Inflow=33.53 cfs 1.965 af
 Primary=15.84 cfs 1.710 af Secondary=17.68 cfs 0.255 af Outflow=33.53 cfs 1.965 af

Pond 327: Pipe

Peak Elev=3,607.90' Inflow=20.32 cfs 1.980 af
 18.0" Round Culvert n=0.012 L=75.0' S=0.0103 '/' Outflow=20.32 cfs 1.980 af

Pond 328: Pipe

Peak Elev=3,604.81' Inflow=20.32 cfs 1.980 af
 Primary=19.24 cfs 1.971 af Secondary=1.09 cfs 0.009 af Outflow=20.32 cfs 1.980 af

Pond 330: Pipe

Peak Elev=3,602.64' Inflow=19.24 cfs 1.971 af
 Primary=9.23 cfs 1.659 af Secondary=10.00 cfs 0.312 af Outflow=19.24 cfs 1.971 af

Pond 331: Pipe

Peak Elev=3,595.30' Inflow=9.23 cfs 1.659 af
 18.0" Round Culvert n=0.012 L=78.0' S=0.0133 '/' Outflow=9.23 cfs 1.659 af

Pond 333: Pipe

Peak Elev=3,598.25' Inflow=9.23 cfs 1.659 af
 Primary=5.38 cfs 1.431 af Secondary=3.85 cfs 0.228 af Outflow=9.23 cfs 1.659 af

Pond 337: Pipe

Peak Elev=3,574.97' Inflow=5.38 cfs 1.431 af
 12.0" Round Culvert n=0.012 L=164.0' S=0.0420 '/' Outflow=5.38 cfs 1.431 af

Pond 350: Pipe

Peak Elev=3,556.86' Inflow=8.69 cfs 2.757 af
 18.0" Round Culvert n=0.012 L=881.0' S=0.0164 '/' Outflow=8.69 cfs 2.757 af

Pond 351: Pipe/DP

Peak Elev=3,575.41' Storage=44,691 cf Inflow=52.02 cfs 2.757 af
 12.0" Round Culvert n=0.012 L=182.0' S=0.0330 '/' Outflow=8.69 cfs 2.757 af

Pond 356: Pipe

Peak Elev=3,514.75' Inflow=60.60 cfs 12.996 af
 Primary=60.60 cfs 12.996 af Secondary=0.00 cfs 0.000 af Outflow=60.60 cfs 12.996 af

Pond 357: Pipe

Peak Elev=3,528.62' Inflow=103.11 cfs 14.879 af
 Primary=60.60 cfs 12.996 af Secondary=42.51 cfs 1.883 af Outflow=103.11 cfs 14.879 af

Pond 362: Pipe

Peak Elev=3,522.17' Inflow=18.28 cfs 5.621 af
 18.0" Round Culvert n=0.012 L=116.0' S=0.0209 '/' Outflow=18.28 cfs 5.621 af

Pond 365: Pipe

Peak Elev=3,526.75' Inflow=18.28 cfs 5.621 af
 18.0" Round Culvert n=0.012 L=199.0' S=0.0221 '/' Outflow=18.28 cfs 5.621 af

Pond 366: Pipe

Peak Elev=3,530.28' Inflow=18.28 cfs 5.621 af
 18.0" Round Culvert n=0.012 L=166.0' S=0.0205 '/' Outflow=18.28 cfs 5.621 af

Pond 367: Pipe

Peak Elev=3,534.60' Inflow=18.28 cfs 5.621 af
 18.0" Round Culvert n=0.012 L=201.0' S=0.0201 '/' Outflow=18.28 cfs 5.621 af

Pond 368: Pipe

Peak Elev=3,538.69' Inflow=18.28 cfs 5.621 af
 18.0" Round Culvert n=0.012 L=203.0' S=0.0203 '/' Outflow=18.28 cfs 5.621 af

Pond 369: Pipe

Peak Elev=3,547.88' Inflow=19.89 cfs 5.639 af
 Primary=18.28 cfs 5.621 af Secondary=1.61 cfs 0.018 af Outflow=19.89 cfs 5.639 af

Pond 370: Pipe

Peak Elev=3,551.03' Inflow=14.53 cfs 4.461 af
 18.0" Round Culvert n=0.012 L=307.0' S=0.0088 '/' Outflow=14.53 cfs 4.461 af

Pond 371: Pipe

Peak Elev=3,553.72' Inflow=14.53 cfs 4.461 af
 18.0" Round Culvert n=0.012 L=307.0' S=0.0087 '/' Outflow=14.53 cfs 4.461 af

Pond 372: Pipe

Peak Elev=3,555.26' Inflow=14.53 cfs 4.461 af
 18.0" Round Culvert n=0.012 L=133.0' S=0.0329 '/' Outflow=14.53 cfs 4.461 af

Pond 373: Pipe

Peak Elev=3,564.89' Inflow=50.45 cfs 5.584 af
 Primary=14.53 cfs 4.461 af Secondary=35.92 cfs 1.124 af Outflow=50.45 cfs 5.584 af

Pond 374: Pipe

Peak Elev=3,558.71' Inflow=4.51 cfs 2.170 af
 15.0" Round Culvert n=0.012 L=130.0' S=0.0235 '/' Outflow=4.51 cfs 2.170 af

Pond 375: Pipe/DP

Peak Elev=3,584.94' Storage=18,235 cf Inflow=24.73 cfs 1.492 af
 12.0" Round Culvert n=0.012 L=246.0' S=0.0114 '/' Outflow=4.70 cfs 1.492 af

Pond 376: Pipe

Peak Elev=3,582.51' Inflow=4.70 cfs 1.492 af
 12.0" Round Culvert n=0.012 L=494.0' S=0.0115 '/' Outflow=4.70 cfs 1.492 af

Pond 377: Pipe

Peak Elev=3,573.16' Inflow=4.70 cfs 1.492 af
 12.0" Round Culvert n=0.012 L=159.0' S=0.0075 '/' Outflow=4.70 cfs 1.492 af

Pond 378: Pipe

Peak Elev=3,548.80' Inflow=6.52 cfs 1.178 af
 18.0" Round Culvert n=0.012 L=132.0' S=0.0328 '/' Outflow=6.52 cfs 1.178 af

Pond 379: Pipe

Peak Elev=3,555.03' Inflow=29.43 cfs 1.573 af
 Primary=6.52 cfs 1.178 af Secondary=22.91 cfs 0.395 af Outflow=29.43 cfs 1.573 af

Pond 381: Pipe

Peak Elev=3,588.06' Inflow=57.83 cfs 3.710 af
 Primary=10.42 cfs 2.445 af Secondary=47.41 cfs 1.265 af Outflow=57.83 cfs 3.710 af

Pond 382: Pipe

Peak Elev=3,573.98' Inflow=10.42 cfs 2.445 af
 Primary=6.47 cfs 2.337 af Secondary=3.96 cfs 0.109 af Outflow=10.42 cfs 2.445 af

Pond 383: Pipe

Peak Elev=3,569.07' Inflow=6.47 cfs 2.337 af
 12.0" Round Culvert n=0.012 L=195.0' S=0.0206 '/' Outflow=6.47 cfs 2.337 af

Pond 384: Pipe

Peak Elev=3,565.43' Inflow=6.47 cfs 2.337 af
 Primary=4.51 cfs 2.170 af Secondary=1.95 cfs 0.167 af Outflow=6.47 cfs 2.337 af

Pond 385: Pipe

Peak Elev=3,561.67' Inflow=4.51 cfs 2.170 af
 12.0" Round Culvert n=0.012 L=104.0' S=0.0064 '/' Outflow=4.51 cfs 2.170 af

Pond 386: Pipe

Peak Elev=3,564.88' Inflow=4.51 cfs 2.170 af
 Primary=2.31 cfs 1.806 af Secondary=2.20 cfs 0.364 af Outflow=4.51 cfs 2.170 af

Pond 400: Pipe

Peak Elev=3,499.61' Inflow=42.49 cfs 29.106 af
 36.0" Round Culvert n=0.012 L=50.0' S=0.0036 '/' Outflow=42.49 cfs 29.106 af

Pond 401: Pipe

Peak Elev=3,511.47' Inflow=42.49 cfs 29.106 af
 24.0" Round Culvert n=0.012 L=231.0' S=0.0301 '/' Outflow=42.49 cfs 29.106 af

Pond 402: Pipe

Peak Elev=3,527.99' Inflow=42.49 cfs 29.106 af
 24.0" Round Culvert n=0.012 L=418.0' S=0.0402 '/' Outflow=42.49 cfs 29.106 af

Pond 404: Pipe

Peak Elev=3,548.38' Inflow=191.76 cfs 27.976 af
 60.0" Round Culvert n=0.012 L=741.0' S=0.0025 '/' Outflow=191.76 cfs 27.976 af

Pond 405: Pipe

Peak Elev=3,547.29' Inflow=191.76 cfs 27.976 af
 60.0" Round Culvert n=0.012 L=203.0' S=0.0051 '/' Outflow=191.76 cfs 27.976 af

Pond 406: Pipe

Peak Elev=3,553.62' Inflow=191.76 cfs 27.976 af
 54.0" Round Culvert n=0.012 L=504.0' S=0.0142 '/' Outflow=191.76 cfs 27.976 af

Pond 407: Pipe

Peak Elev=3,568.71' Inflow=25.62 cfs 2.955 af
 24.0" Round Culvert n=0.012 L=400.0' S=0.0062 '/' Outflow=25.62 cfs 2.955 af

Pond 408: Pipe

Peak Elev=3,564.05' Inflow=191.76 cfs 27.976 af
 54.0" Round Culvert n=0.012 L=509.0' S=0.0138 '/' Outflow=191.76 cfs 27.976 af

Pond 409: Pipe

Peak Elev=3,568.41' Inflow=133.92 cfs 20.072 af
 42.0" Round Culvert n=0.012 L=291.0' S=0.0242 '/' Outflow=133.92 cfs 20.072 af

Pond 410: Pipe

Peak Elev=3,573.83' Inflow=128.54 cfs 18.641 af
 42.0" Round Culvert n=0.012 L=240.0' S=0.0238 '/' Outflow=128.54 cfs 18.641 af

Pond 411: Pipe

Peak Elev=3,578.46' Inflow=11.41 cfs 1.075 af
 24.0" Round Culvert n=0.012 L=259.0' S=0.0269 '/' Outflow=11.41 cfs 1.075 af

Pond 412: Pipe

Peak Elev=3,582.19' Storage=43,181 cf Inflow=159.88 cfs 17.571 af
 42.0" Round Culvert n=0.012 L=241.0' S=0.0193 '/' Outflow=122.43 cfs 17.566 af

Pond 413: Pipe

Peak Elev=3,581.07' Inflow=46.22 cfs 5.784 af
 36.0" Round Culvert n=0.012 L=250.0' S=0.0187 '/' Outflow=46.22 cfs 5.784 af

Pond 414: Pipe

Peak Elev=3,586.78' Inflow=46.22 cfs 5.784 af
 36.0" Round Culvert n=0.012 L=300.0' S=0.0187 '/' Outflow=46.22 cfs 5.784 af

Pond 415: Pipe

Peak Elev=3,593.42' Inflow=46.22 cfs 5.784 af
 36.0" Round Culvert n=0.012 L=350.0' S=0.0187 '/' Outflow=46.22 cfs 5.784 af

Pond 416: Pipe

Peak Elev=3,597.88' Inflow=46.22 cfs 5.784 af
 36.0" Round Culvert n=0.012 L=252.0' S=0.0173 '/' Outflow=46.22 cfs 5.784 af

Pond 417: Pipe

Peak Elev=3,603.61' Inflow=46.22 cfs 5.784 af
 36.0" Round Culvert n=0.012 L=297.0' S=0.0190 '/' Outflow=46.22 cfs 5.784 af

Pond 418: Pipe

Peak Elev=3,609.94' Inflow=46.22 cfs 5.784 af
 36.0" Round Culvert n=0.012 L=346.0' S=0.0180 '/' Outflow=46.22 cfs 5.784 af

Pond 419: Pipe

Peak Elev=3,620.72' Inflow=29.92 cfs 3.290 af
 36.0" Round Culvert n=0.012 L=451.0' S=0.0201 '/' Outflow=29.92 cfs 3.290 af

Pond 420: Pipe

Peak Elev=3,622.61' Inflow=29.92 cfs 3.290 af
 36.0" Round Culvert n=0.012 L=190.0' S=0.0072 '/' Outflow=29.92 cfs 3.290 af

Pond 421: Pipe

Peak Elev=3,626.80' Inflow=10.21 cfs 1.217 af
 21.0" Round Culvert n=0.012 L=157.0' S=0.0109 '/' Outflow=10.21 cfs 1.217 af

Pond 426: Pipe	Peak Elev=3,629.66' Inflow=9.81 cfs 1.091 af 27.0" Round Culvert n=0.012 L=542.0' S=0.0153 '/' Outflow=9.81 cfs 1.091 af
Pond 427: Pipe	Peak Elev=3,632.74' Inflow=4.81 cfs 0.467 af 21.0" Round Culvert n=0.012 L=157.0' S=0.0100 '/' Outflow=4.81 cfs 0.467 af
Pond 429: Pipe	Peak Elev=3,637.74' Inflow=5.35 cfs 0.623 af 21.0" Round Culvert n=0.012 L=539.0' S=0.0140 '/' Outflow=5.35 cfs 0.623 af
Pond 430: Pipe	Peak Elev=3,639.75' Inflow=5.35 cfs 0.623 af 21.0" Round Culvert n=0.012 L=157.0' S=0.0100 '/' Outflow=5.35 cfs 0.623 af
Pond 433: Pipe	Peak Elev=3,619.25' Inflow=21.55 cfs 2.594 af Primary=17.12 cfs 2.494 af Secondary=4.43 cfs 0.101 af Outflow=21.55 cfs 2.594 af
Pond 434: Pipe	Peak Elev=3,621.73' Inflow=20.37 cfs 2.438 af 21.0" Round Culvert n=0.012 L=171.0' S=0.0033 '/' Outflow=20.37 cfs 2.438 af
Pond 435: Pipe	Peak Elev=3,621.82' Inflow=20.37 cfs 2.438 af 21.0" Round Culvert n=0.012 L=138.0' S=0.0064 '/' Outflow=20.37 cfs 2.438 af
Pond 436: Pipe	Peak Elev=3,624.17' Inflow=40.26 cfs 2.824 af Primary=20.37 cfs 2.438 af Secondary=19.89 cfs 0.386 af Outflow=40.26 cfs 2.824 af
Pond 449: Pipe	Peak Elev=3,618.30' Inflow=46.44 cfs 2.687 af Primary=23.91 cfs 2.341 af Secondary=22.53 cfs 0.345 af Outflow=46.44 cfs 2.687 af
Pond 450: Pipe	Peak Elev=3,615.79' Inflow=23.91 cfs 2.341 af 21.0" Round Culvert n=0.012 L=170.0' S=0.0123 '/' Outflow=23.91 cfs 2.341 af
Pond 451: Pipe	Peak Elev=3,612.46' Inflow=23.91 cfs 2.341 af Primary=17.31 cfs 2.229 af Secondary=6.59 cfs 0.112 af Outflow=23.91 cfs 2.341 af
Pond 452: Pipe	Peak Elev=3,606.97' Inflow=11.69 cfs 1.184 af 24.0" Round Culvert n=0.012 L=197.0' S=0.0025 '/' Outflow=11.69 cfs 1.184 af
Pond 453: Pipe	Peak Elev=3,609.12' Inflow=7.04 cfs 0.737 af 21.0" Round Culvert n=0.012 L=171.0' S=0.0111 '/' Outflow=7.04 cfs 0.737 af
Pond 455: Pipe	Peak Elev=3,612.83' Inflow=20.96 cfs 2.072 af 18.0" Round Culvert n=0.012 L=57.0' S=0.0104 '/' Outflow=20.96 cfs 2.072 af
Pond 456: Pipe	Peak Elev=3,605.94' Inflow=20.96 cfs 2.072 af 21.0" Round Culvert n=0.012 L=170.0' S=0.0148 '/' Outflow=20.96 cfs 2.072 af
Pond 457: Pipe	Peak Elev=3,605.58' Inflow=25.25 cfs 2.519 af 24.0" Round Culvert n=0.012 L=283.0' S=0.0023 '/' Outflow=25.25 cfs 2.519 af
Pond 459: Pipe	Peak Elev=3,561.61' Inflow=31.19 cfs 4.032 af 48.0" Round Culvert n=0.012 L=344.0' S=0.0120 '/' Outflow=31.19 cfs 4.032 af

Pond 460: Pipe

Peak Elev=3,567.14' Inflow=31.19 cfs 4.032 af
 48.0" Round Culvert n=0.012 L=400.0' S=0.0139 '/' Outflow=31.19 cfs 4.032 af

Pond 462: Pipe

Peak Elev=3,587.57' Inflow=31.19 cfs 4.032 af
 24.0" Round Culvert n=0.012 L=145.0' S=0.1159 '/' Outflow=31.19 cfs 4.032 af

Pond 701: Pipe

Peak Elev=3,577.45' Inflow=56.35 cfs 11.997 af
 48.0" Round Culvert n=0.012 L=20.0' S=0.0870 '/' Outflow=56.35 cfs 11.997 af

Pond 702: Pipe

Peak Elev=3,575.25' Inflow=56.35 cfs 11.997 af
 42.0" Round Culvert n=0.012 L=266.0' S=0.0874 '/' Outflow=56.35 cfs 11.997 af

Pond 703: (new Pond)

Peak Elev=3,552.30' Inflow=56.35 cfs 11.997 af
 36.0" Round Culvert n=0.012 L=1,006.0' S=0.0874 '/' Outflow=56.35 cfs 11.997 af

Pond 704: (new Pond)

Peak Elev=3,463.57' Inflow=56.35 cfs 11.997 af
 78.0" Round Culvert n=0.012 L=108.0' S=0.0200 '/' Outflow=56.35 cfs 11.997 af

Pond Pond A: Pond A

Peak Elev=3,399.17' Storage=12.003 af Inflow=292.18 cfs 54.278 af
 Primary=9.31 cfs 20.210 af Secondary=238.38 cfs 34.036 af Outflow=247.69 cfs 54.246 af

Pond Pond B: Pond B

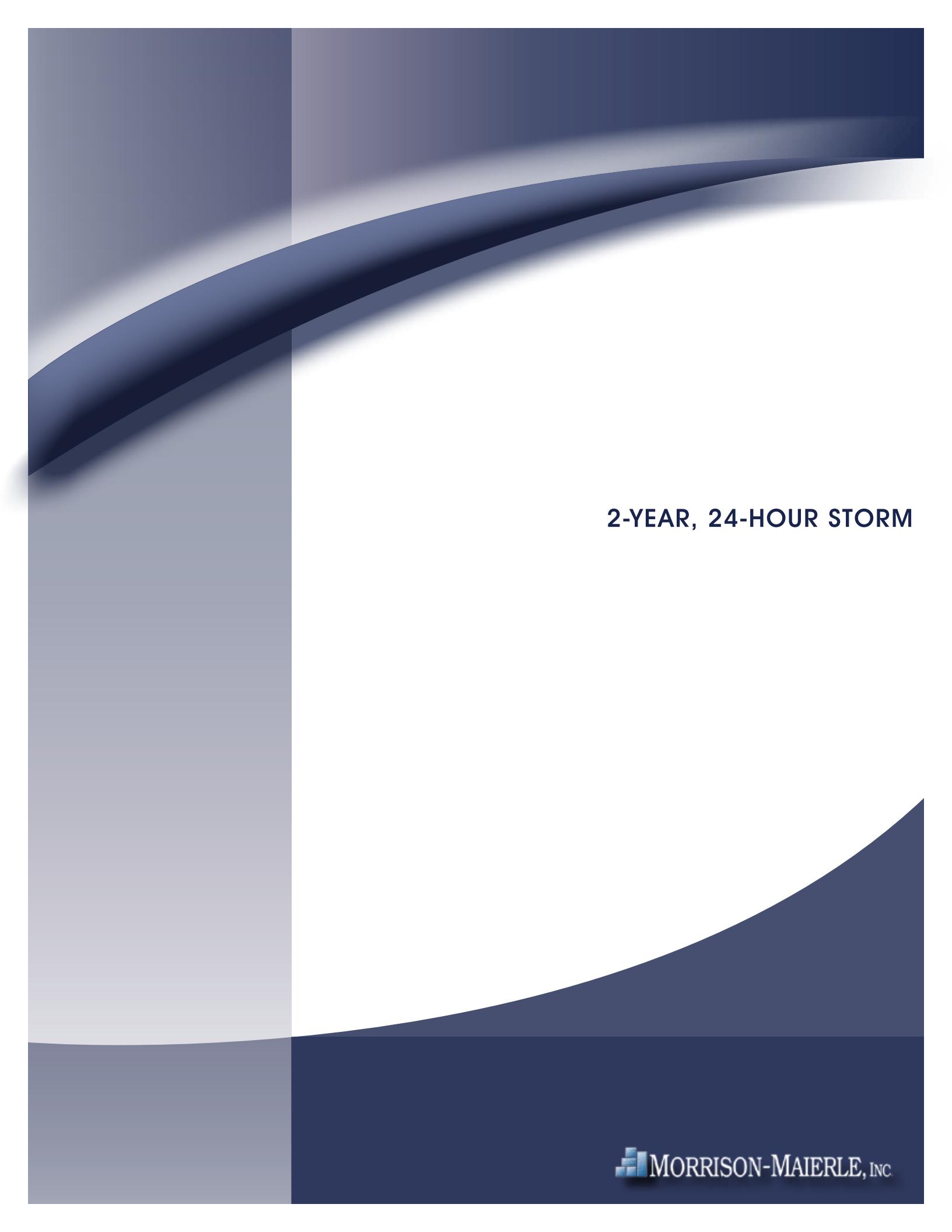
Peak Elev=3,391.86' Storage=9.664 af Inflow=247.69 cfs 54.246 af
 Primary=9.11 cfs 27.233 af Secondary=164.73 cfs 26.993 af Outflow=173.84 cfs 54.226 af

Pond Pond C: Pond C

Peak Elev=3,384.63' Storage=7.892 af Inflow=173.84 cfs 54.226 af
 Primary=35.50 cfs 48.055 af Secondary=57.53 cfs 6.096 af Outflow=93.03 cfs 54.151 af

Pond Pond D: Pond D

Peak Elev=3,436.95' Storage=0.663 af Inflow=22.45 cfs 1.894 af
 Primary=3.40 cfs 1.894 af Secondary=0.00 cfs 0.000 af Outflow=3.40 cfs 1.894 af


Pond Pond E: Pond E

Peak Elev=3,545.59' Storage=12.026 af Inflow=197.76 cfs 29.106 af
 Primary=42.49 cfs 29.106 af Secondary=0.00 cfs 0.000 af Outflow=42.49 cfs 29.106 af

Total Runoff Area = 3,980.000 ac Runoff Volume = 360.151 af Average Runoff Depth = 1.09"
91.66% Pervious = 3,648.000 ac 8.34% Impervious = 332.000 ac

APPENDIX G

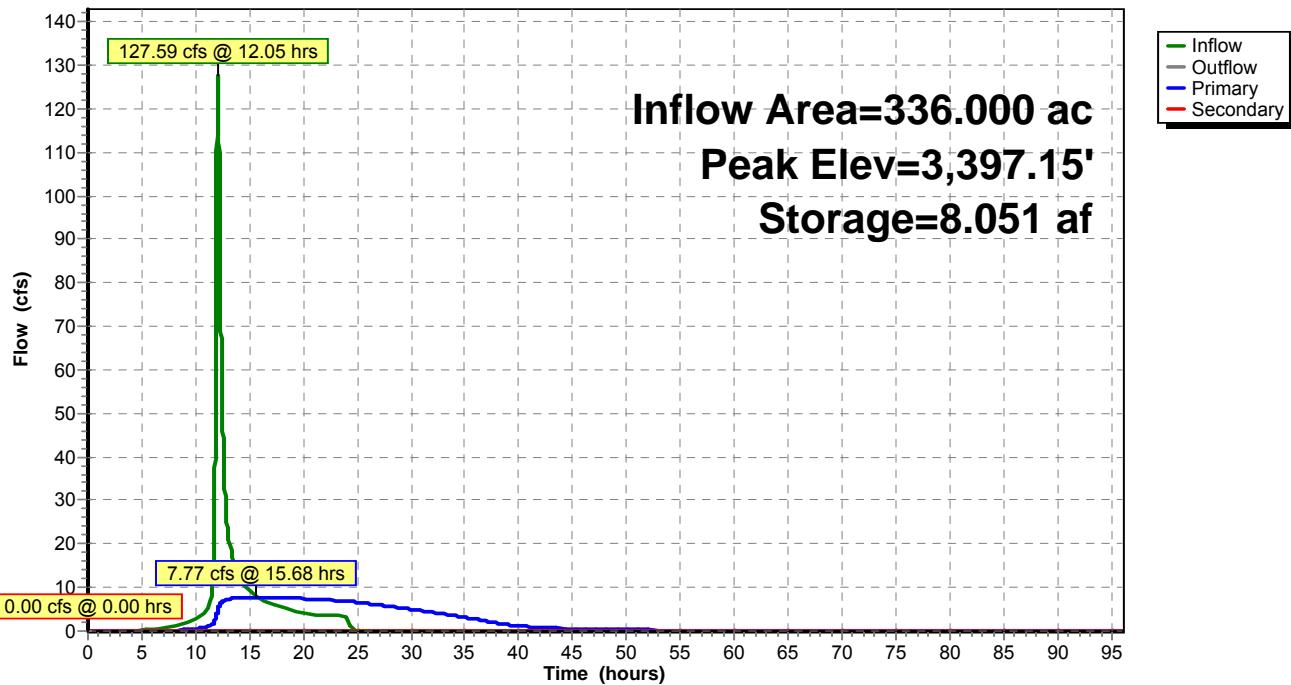
HydroCAD Summary
Ponds A, B, C, D, and E

2-YEAR, 24-HOUR STORM

Summary for Pond Pond A: Pond A

Inflow Area = 336.000 ac, 52.98% Impervious, Inflow Depth = 0.49" for 2-Year event
 Inflow = 127.59 cfs @ 12.05 hrs, Volume= 13.817 af
 Outflow = 7.77 cfs @ 15.68 hrs, Volume= 13.793 af, Atten= 94%, Lag= 217.8 min
 Primary = 7.77 cfs @ 15.68 hrs, Volume= 13.793 af
 Secondary = 0.00 cfs @ 0.00 hrs, Volume= 0.000 af

Routing by Stor-Ind method, Time Span= 0.00-96.00 hrs, dt= 0.01 hrs
 Peak Elev= 3,397.15' @ 15.68 hrs Surf.Area= 1.872 ac Storage= 8.051 af
 Flood Elev= 3,400.49' Surf.Area= 2.160 ac Storage= 14.769 af


Plug-Flow detention time= 616.8 min calculated for 13.793 af (100% of inflow)
 Center-of-Mass det. time= 615.7 min (1,460.6 - 845.0)

Volume	Invert	Avail.Storage	Storage Description		
#1	3,392.02'	14.769 af	Custom Stage Data (Irregular) Listed below (Recalc)		
Elevation (feet)	Surf.Area (acres)	Perim. (feet)	Inc.Store (acre-feet)	Cum.Store (acre-feet)	Wet.Area (acres)
3,392.02	1.210	1,096.0	0.000	0.000	1.210
3,393.00	1.210	1,096.0	1.186	1.186	1.235
3,394.00	1.590	1,124.0	1.396	2.581	1.351
3,395.00	1.690	1,158.0	1.640	4.221	1.495
3,396.00	1.770	1,190.0	1.730	5.951	1.635
3,397.00	1.860	1,223.0	1.815	7.766	1.783
3,398.00	1.940	1,252.0	1.900	9.666	1.917
3,399.00	2.030	1,280.0	1.985	11.651	2.050
3,399.50	2.070	1,295.0	1.025	12.676	2.122
3,400.49	2.160	1,322.0	2.094	14.769	2.255

Device	Routing	Invert	Outlet Devices								
#1	Secondary	3,398.10'	71.0' long x 1.0' breadth Broad-Crested Rectangular Weir								
			Head (feet) 0.20 0.40 0.60 0.80 1.00 1.20 1.40 1.60 1.80 2.00								
			2.50 3.00								
			Coef. (English) 2.69 2.72 2.75 2.85 2.98 3.08 3.20 3.28 3.31								
			3.30 3.31 3.32								
#2	Primary	3,392.02'	9.0" W x 12.0" H Vert. Orifice/Grate C= 0.600								

Primary OutFlow Max=7.77 cfs @ 15.68 hrs HW=3,397.15' (Free Discharge)
 ↑ 2=Orifice/Grate (Orifice Controls 7.77 cfs @ 10.36 fps)

Secondary OutFlow Max=0.00 cfs @ 0.00 hrs HW=3,392.02' (Free Discharge)
 ↑ 1=Broad-Crested Rectangular Weir (Controls 0.00 cfs)

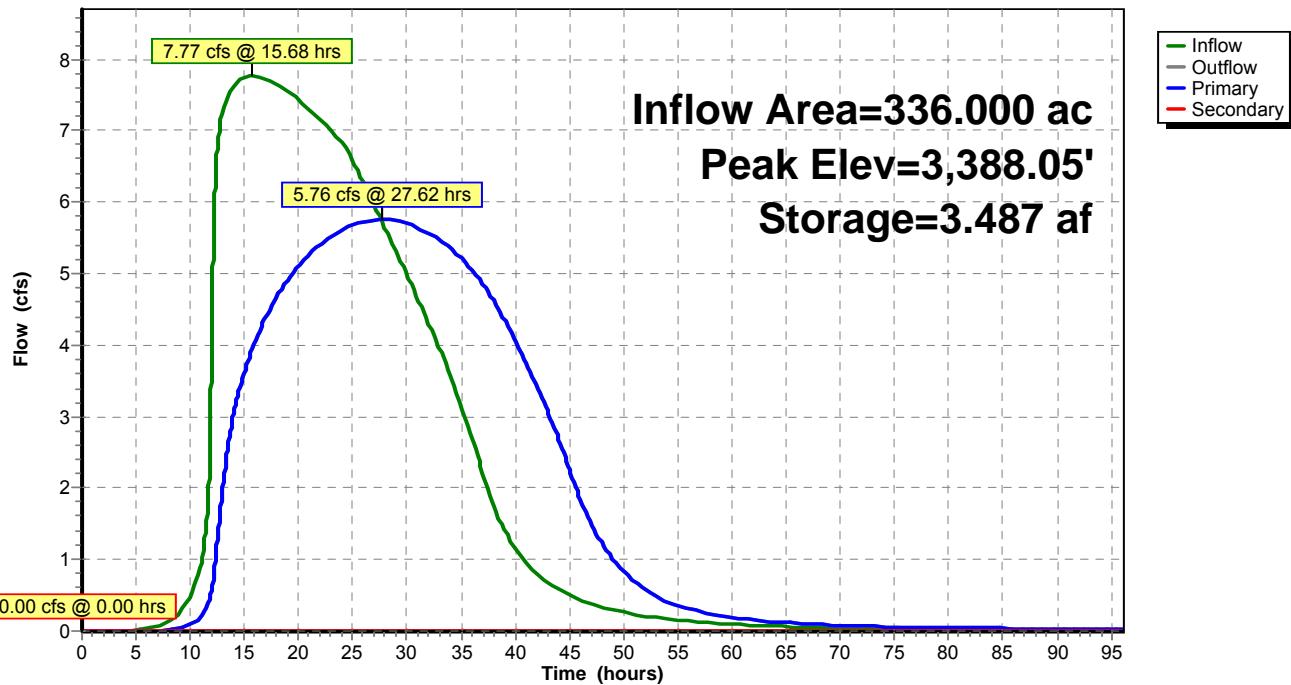
Pond Pond A: Pond A**Hydrograph**

Summary for Pond Pond B: Pond B

Inflow Area = 336.000 ac, 52.98% Impervious, Inflow Depth > 0.49" for 2-Year event
 Inflow = 7.77 cfs @ 15.68 hrs, Volume= 13.793 af
 Outflow = 5.76 cfs @ 27.62 hrs, Volume= 13.778 af, Atten= 26%, Lag= 716.3 min
 Primary = 5.76 cfs @ 27.62 hrs, Volume= 13.778 af
 Secondary = 0.00 cfs @ 0.00 hrs, Volume= 0.000 af

Routing by Stor-Ind method, Time Span= 0.00-96.00 hrs, dt= 0.01 hrs
 Peak Elev= 3,388.05' @ 27.62 hrs Surf.Area= 1.444 ac Storage= 3.487 af
 Flood Elev= 3,393.58' Surf.Area= 1.960 ac Storage= 12.890 af

Plug-Flow detention time= 370.4 min calculated for 13.778 af (100% of inflow)
 Center-of-Mass det. time= 366.0 min (1,826.7 - 1,460.6)


Volume	Invert	Avail.Storage	Storage Description
#1	3,385.00'	12.890 af	Custom Stage Data (Irregular) Listed below (Recalc)

Elevation (feet)	Surf.Area (acres)	Perim. (feet)	Inc.Store (acre-feet)	Cum.Store (acre-feet)	Wet.Area (acres)
3,385.00	0.450	906.0	0.000	0.000	0.450
3,386.00	1.160	1,554.0	0.777	0.777	3.362
3,387.00	1.340	1,542.0	1.249	2.026	3.439
3,388.00	1.440	1,585.0	1.390	3.416	3.687
3,389.00	1.530	1,614.0	1.485	4.901	3.861
3,390.00	1.620	1,644.0	1.575	6.476	4.043
3,391.00	1.720	1,671.0	1.670	8.145	4.211
3,392.00	1.810	1,701.0	1.765	9.910	4.400
3,392.50	1.860	1,718.0	0.917	10.828	4.508
3,393.58	1.960	1,752.0	2.063	12.890	4.727

Device	Routing	Invert	Outlet Devices
#1	Secondary	3,391.00'	71.0' long x 1.0' breadth Broad-Crested Rectangular Weir Head (feet) 0.20 0.40 0.60 0.80 1.00 1.20 1.40 1.60 1.80 2.00 2.50 3.00 Coef. (English) 2.69 2.72 2.75 2.85 2.98 3.08 3.20 3.28 3.31 3.30 3.31 3.32
#2	Primary	3,385.00'	9.0" W x 12.0" H Vert. Orifice/Grate C= 0.600

Primary OutFlow Max=5.76 cfs @ 27.62 hrs HW=3,388.05' (Free Discharge)
 ↑ 2=Orifice/Grate (Orifice Controls 5.76 cfs @ 7.68 fps)

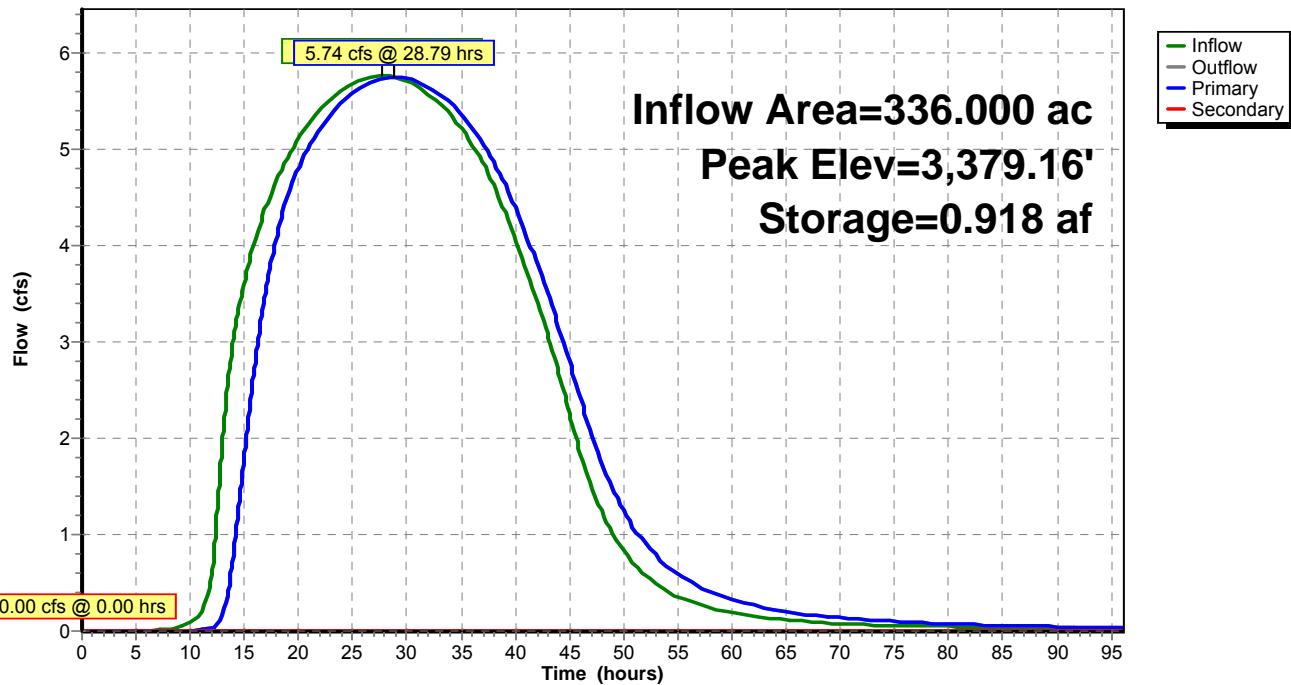
Secondary OutFlow Max=0.00 cfs @ 0.00 hrs HW=3,385.00' (Free Discharge)
 ↑ 1=Broad-Crested Rectangular Weir (Controls 0.00 cfs)

Pond Pond B: Pond B**Hydrograph**

Summary for Pond Pond C: Pond C

Inflow Area = 336.000 ac, 52.98% Impervious, Inflow Depth > 0.49" for 2-Year event
 Inflow = 5.76 cfs @ 27.62 hrs, Volume= 13.778 af
 Outflow = 5.74 cfs @ 28.79 hrs, Volume= 13.712 af, Atten= 0%, Lag= 69.9 min
 Primary = 5.74 cfs @ 28.79 hrs, Volume= 13.712 af
 Secondary = 0.00 cfs @ 0.00 hrs, Volume= 0.000 af

Routing by Stor-Ind method, Time Span= 0.00-96.00 hrs, dt= 0.01 hrs
 Peak Elev= 3,379.16' @ 28.79 hrs Surf.Area= 0.911 ac Storage= 0.918 af
 Flood Elev= 3,386.61' Surf.Area= 1.770 ac Storage= 11.199 af


Plug-Flow detention time= 148.4 min calculated for 13.712 af (100% of inflow)
 Center-of-Mass det. time= 133.1 min (1,959.8 - 1,826.7)

Volume	Invert	Avail.Storage	Storage Description		
#1	3,378.12'	11.199 af	Custom Stage Data (Irregular) Listed below (Recalc)		
Elevation (feet)	Surf.Area (acres)	Perim. (feet)	Inc.Store (acre-feet)	Cum.Store (acre-feet)	Wet.Area (acres)
3,378.12	0.880	1,462.0	0.000	0.000	0.880
3,379.00	0.880	1,462.0	0.774	0.774	0.910
3,380.00	1.080	1,574.0	0.978	1.753	1.532
3,381.00	1.190	1,649.0	1.135	2.887	1.975
3,382.00	1.300	1,687.0	1.245	4.132	2.210
3,383.00	1.400	1,720.0	1.350	5.482	2.419
3,384.00	1.500	1,752.0	1.450	6.931	2.626
3,385.00	1.600	1,765.0	1.550	8.481	2.718
3,385.50	1.660	1,780.0	0.815	9.296	2.818
3,386.61	1.770	1,815.0	1.903	11.199	3.052

Device	Routing	Invert	Outlet Devices								
#1	Secondary	3,384.20'	72.3' long x 0.7' breadth Broad-Crested Rectangular Weir								
			Head (feet) 0.20 0.40 0.60 0.80 1.00 1.20 1.40 1.60 1.80 2.00								
			2.50								
			Coef. (English) 2.76 2.82 2.93 3.09 3.18 3.22 3.27 3.30 3.32								
			3.31 3.32								
#2	Primary	3,378.12'	24.0" Round Culvert								
			L= 464.0' RCP, square edge headwall, Ke= 0.500								
			Inlet / Outlet Invert= 3,378.12' / 3,362.61' S= 0.0334 '/' Cc= 0.900								
			n= 0.012 Concrete pipe, finished, Flow Area= 3.14 sf								

Primary OutFlow Max=5.74 cfs @ 28.79 hrs HW=3,379.16' (Free Discharge)
 ↑ 2=Culvert (Inlet Controls 5.74 cfs @ 3.47 fps)

Secondary OutFlow Max=0.00 cfs @ 0.00 hrs HW=3,378.12' (Free Discharge)
 ↑ 1=Broad-Crested Rectangular Weir (Controls 0.00 cfs)

Pond Pond C: Pond C**Hydrograph**

Summary for Pond Pond D: Pond D

Inflow Area = 23.000 ac, 4.35% Impervious, Inflow Depth = 0.08" for 2-Year event
 Inflow = 0.48 cfs @ 12.31 hrs, Volume= 0.158 af
 Outflow = 0.48 cfs @ 12.31 hrs, Volume= 0.158 af, Atten= 0%, Lag= 0.2 min
 Primary = 0.48 cfs @ 12.31 hrs, Volume= 0.158 af
 Secondary = 0.00 cfs @ 0.00 hrs, Volume= 0.000 af

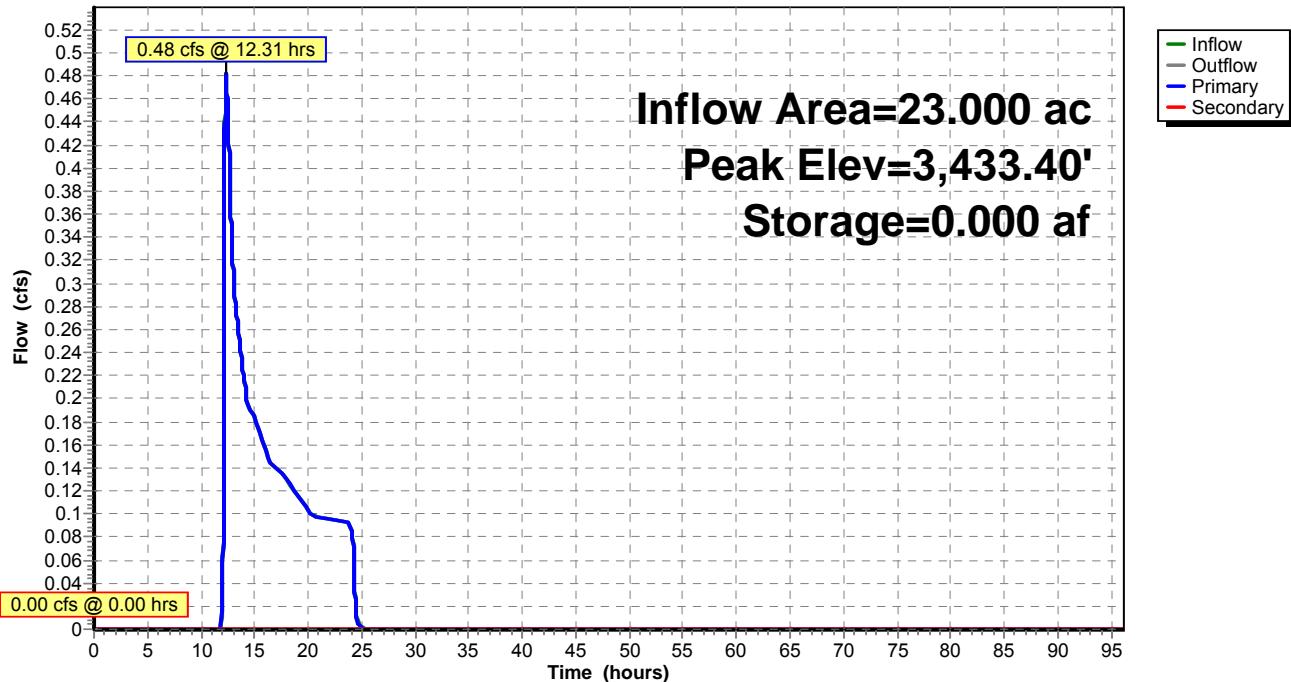
Routing by Stor-Ind method, Time Span= 0.00-96.00 hrs, dt= 0.01 hrs
 Peak Elev= 3,433.40' @ 12.31 hrs Surf.Area= 0.001 ac Storage= 0.000 af
 Flood Elev= 3,443.00' Surf.Area= 0.850 ac Storage= 3.671 af

Plug-Flow detention time= 0.1 min calculated for 0.158 af (100% of inflow)
 Center-of-Mass det. time= 0.1 min (997.6 - 997.5)

Volume	Invert	Avail.Storage	Storage Description		
#1	3,433.00'	3.671 af	Custom Stage Data (Irregular)	Listed below (Recalc)	
Elevation (feet)	Surf.Area (acres)	Perim. (feet)	Inc.Store (acre-feet)	Cum.Store (acre-feet)	Wet.Area (acres)
3,433.00	0.000	0.0	0.000	0.000	0.000
3,433.50	0.001	44.0	0.000	0.000	0.004
3,434.00	0.020	127.0	0.004	0.004	0.029
3,434.50	0.090	260.0	0.025	0.030	0.124
3,435.00	0.170	370.0	0.064	0.094	0.250
3,435.50	0.260	434.0	0.107	0.200	0.344
3,436.00	0.310	481.0	0.142	0.343	0.423
3,436.50	0.340	529.0	0.162	0.505	0.512
3,437.00	0.360	540.0	0.175	0.680	0.534
3,437.50	0.380	556.0	0.185	0.865	0.567
3,438.00	0.400	585.0	0.195	1.060	0.628
3,438.50	0.420	590.0	0.205	1.265	0.640
3,439.00	0.440	598.0	0.215	1.480	0.659
3,439.50	0.460	613.0	0.225	1.705	0.693
3,440.00	0.480	639.0	0.235	1.940	0.753
3,440.50	0.510	666.0	0.247	2.188	0.818
3,441.00	0.530	694.0	0.260	2.448	0.888
3,441.50	0.550	721.0	0.270	2.718	0.958
3,442.00	0.580	755.0	0.282	3.000	1.050
3,442.50	0.630	806.0	0.302	3.302	1.196
3,443.00	0.850	826.0	0.369	3.671	1.256

Device	Routing	Invert	Outlet Devices	
#1	Primary	3,433.00'	10.0" Round Culvert	
			L= 128.0' RCP, sq.cut end projecting, Ke= 0.500 Inlet / Outlet Invert= 3,433.00' / 3,432.13' S= 0.0068 '/' Cc= 0.900 n= 0.013 Cast iron, coated, Flow Area= 0.55 sf	
#2	Secondary	3,438.31'	60.0" Horiz. Orifice/Grate C= 0.600 Limited to weir flow at low heads	

Primary OutFlow Max=0.48 cfs @ 12.31 hrs HW=3,433.40' (Free Discharge)


1=Culvert (Barrel Controls 0.48 cfs @ 2.71 fps)

Secondary OutFlow Max=0.00 cfs @ 0.00 hrs HW=3,433.00' (Free Discharge)

2=Orifice/Grate (Controls 0.00 cfs)

Pond Pond D: Pond D

Hydrograph

Summary for Pond Pond E: Pond E

[79] Warning: Submerged Pond 404 Primary device # 1 OUTLET by 0.23'

Inflow Area = 255.000 ac, 25.49% Impervious, Inflow Depth = 0.21" for 2-Year event
 Inflow = 23.74 cfs @ 12.40 hrs, Volume= 4.393 af
 Outflow = 15.05 cfs @ 12.80 hrs, Volume= 4.393 af, Atten= 37%, Lag= 24.6 min
 Primary = 15.05 cfs @ 12.80 hrs, Volume= 4.393 af
 Secondary = 0.00 cfs @ 0.00 hrs, Volume= 0.000 af

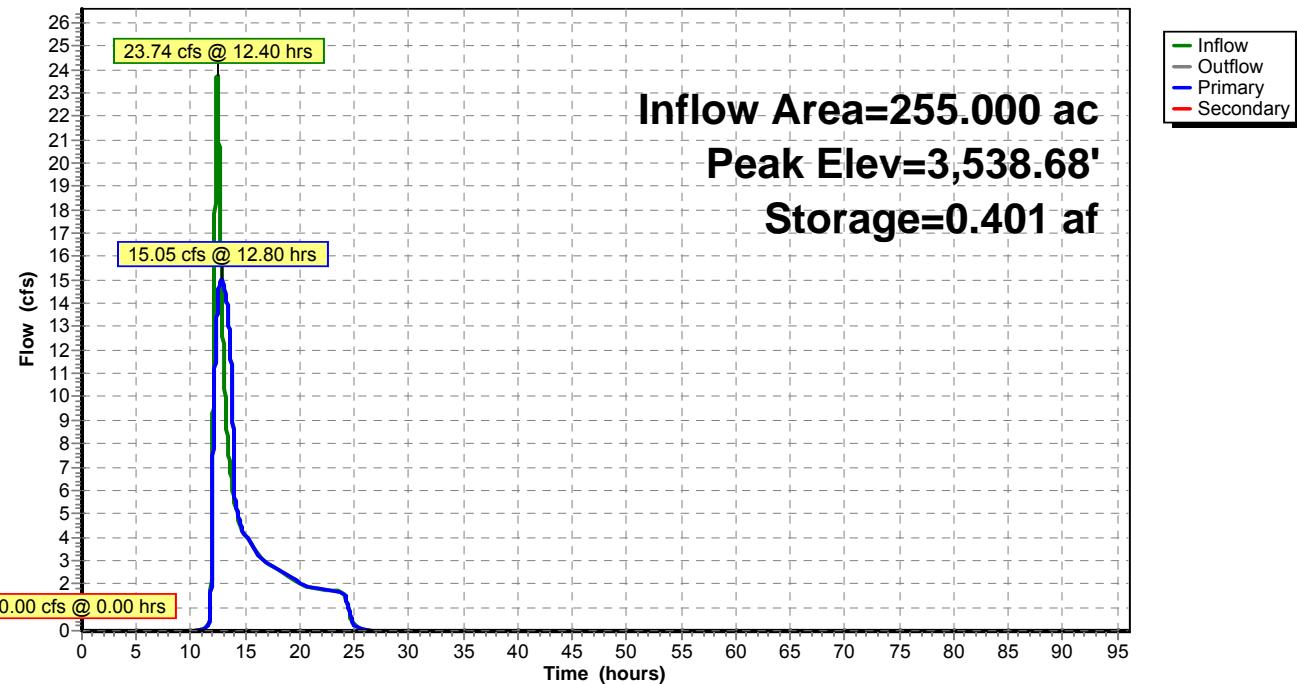
Routing by Stor-Ind method, Time Span= 0.00-96.00 hrs, dt= 0.01 hrs
 Peak Elev= 3,538.68' @ 12.80 hrs Surf.Area= 1.054 ac Storage= 0.401 af
 Flood Elev= 3,545.65' Surf.Area= 1.951 ac Storage= 12.146 af

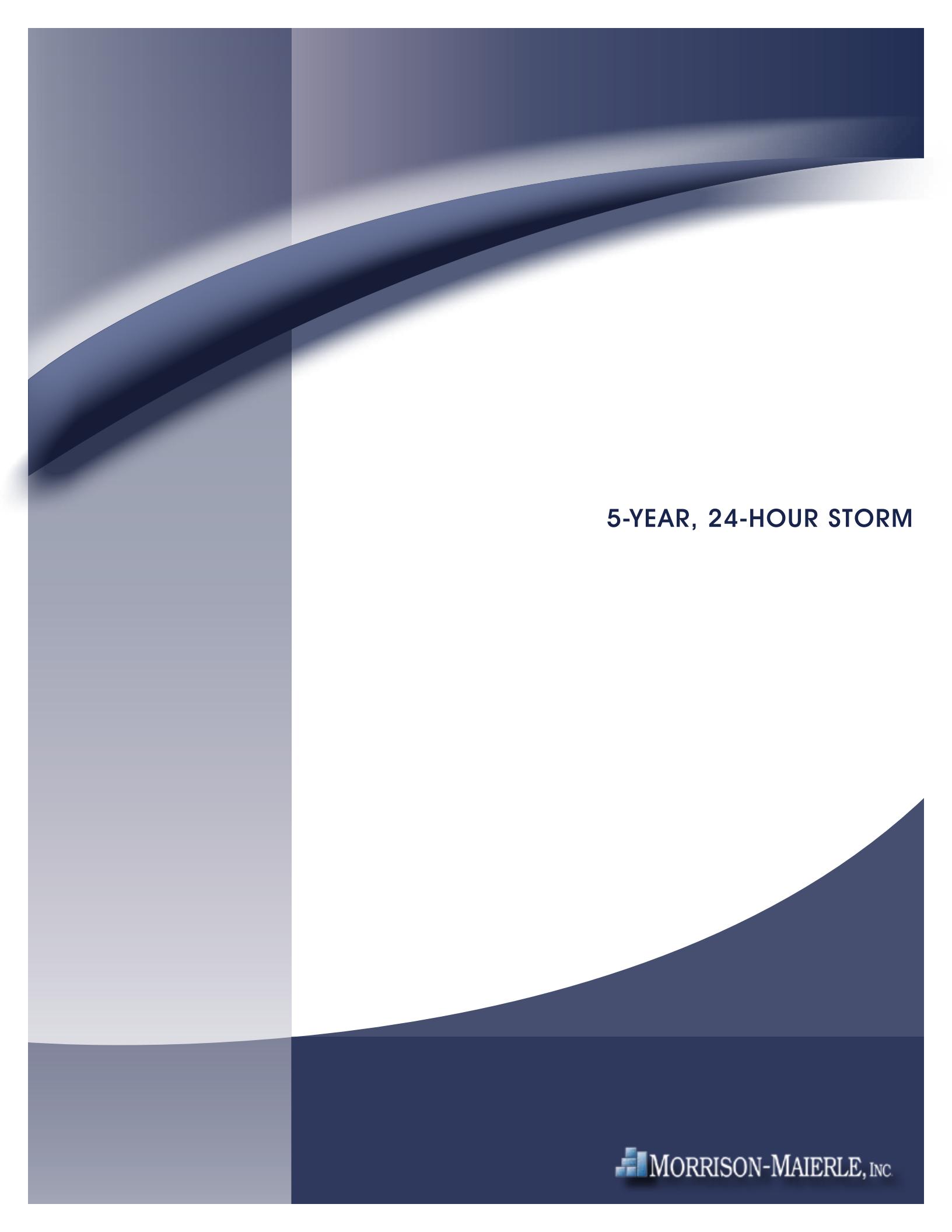
Plug-Flow detention time= (not calculated: outflow precedes inflow)

Center-of-Mass det. time= 6.3 min (938.6 - 932.3)

Volume	Invert	Avail.Storage	Storage Description		
#1	3,536.70'	15.883 af	Custom Stage Data (Irregular)	Listed below (Recalc)	
Elevation (feet)	Surf.Area (acres)	Perim. (feet)	Inc.Store (acre-feet)	Cum.Store (acre-feet)	Wet.Area (acres)
3,536.70	0.000	0.0	0.000	0.000	0.000
3,537.50	0.020	12.0	0.005	0.005	0.000
3,538.00	0.060	271.0	0.019	0.024	0.134
3,538.50	0.900	814.0	0.199	0.223	1.211
3,539.00	1.350	996.0	0.559	0.782	1.812
3,539.50	1.490	1,032.0	0.710	1.492	1.946
3,540.00	1.560	1,070.0	0.762	2.254	2.093
3,540.50	1.590	1,083.0	0.787	3.042	2.145
3,541.00	1.620	1,098.0	0.802	3.844	2.206
3,541.50	1.660	1,111.0	0.820	4.664	2.260
3,542.00	1.690	1,122.0	0.837	5.501	2.307
3,542.50	1.730	1,134.0	0.855	6.356	2.358
3,543.00	1.760	1,146.0	0.872	7.229	2.410
3,543.50	1.800	1,158.0	0.890	8.119	2.462
3,544.00	1.830	1,169.0	0.907	9.026	2.511
3,544.50	1.870	1,180.0	0.925	9.951	2.560
3,545.00	1.900	1,191.0	0.942	10.894	2.609
3,545.50	1.940	1,202.0	0.960	11.854	2.659
3,547.50	2.090	1,244.0	4.029	15.883	2.855

Device	Routing	Invert	Outlet Devices	
#1	Primary	3,536.70'	24.0" Round Culvert	
			L= 177.0' RCP, square edge headwall, Ke= 0.500 Inlet / Outlet Invert= 3,536.70' / 3,526.41' S= 0.0581 '/' Cc= 0.900 n= 0.012 Concrete pipe, finished, Flow Area= 3.14 sf	
#2	Secondary	3,545.65'	71.0' long x 1.0' breadth Broad-Crested Rectangular Weir Head (feet) 0.20 0.40 0.60 0.80 1.00 1.20 1.40 1.60 1.80 2.00 2.50 3.00 Coef. (English) 2.69 2.72 2.75 2.85 2.98 3.08 3.20 3.28 3.31	


3.30 3.31 3.32


Primary OutFlow Max=15.04 cfs @ 12.80 hrs HW=3,538.68' (Free Discharge)
 ↑
 1=Culvert (Inlet Controls 15.04 cfs @ 4.79 fps)

Secondary OutFlow Max=0.00 cfs @ 0.00 hrs HW=3,536.70' (Free Discharge)
 ↑
 2=Broad-Crested Rectangular Weir (Controls 0.00 cfs)

Pond Pond E: Pond E

Hydrograph

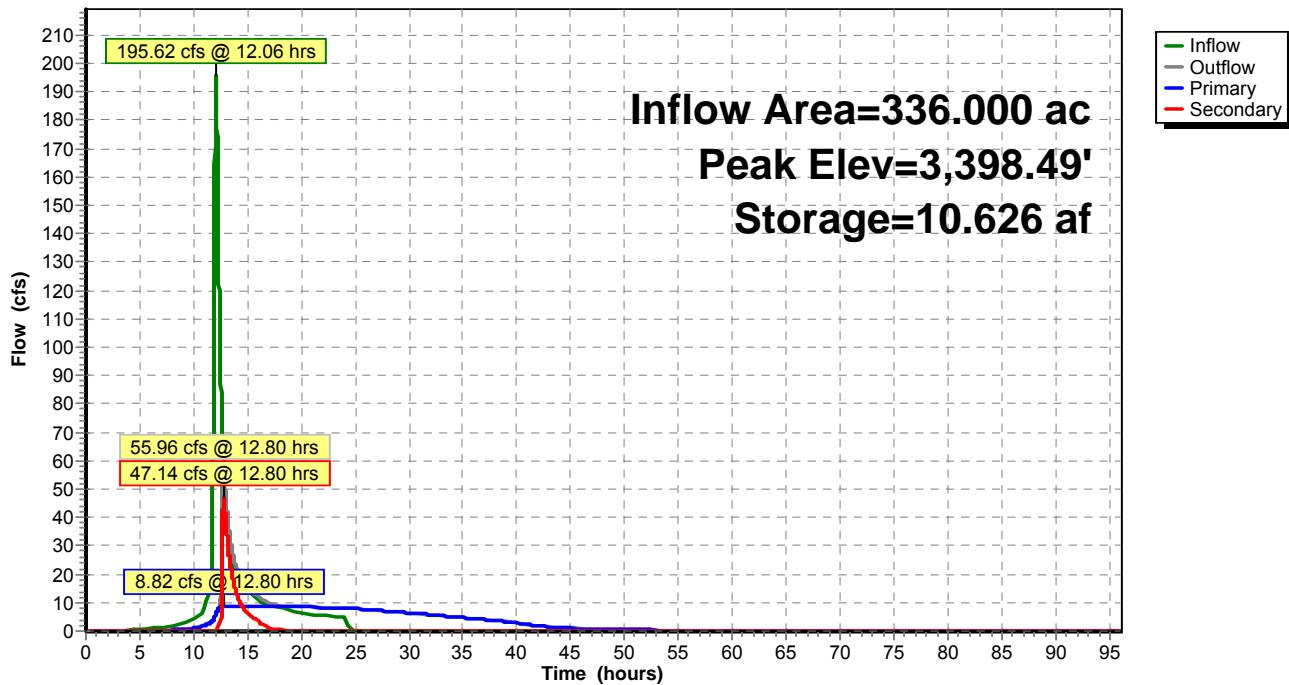
5-YEAR, 24-HOUR STORM

Summary for Pond Pond A: Pond A

[79] Warning: Submerged Pond 107 Primary device # 1 OUTLET by 1.31'

Inflow Area = 336.000 ac, 52.98% Impervious, Inflow Depth = 0.80" for 5-Year event
 Inflow = 195.62 cfs @ 12.06 hrs, Volume= 22.355 af
 Outflow = 55.96 cfs @ 12.80 hrs, Volume= 22.325 af, Atten= 71%, Lag= 44.4 min
 Primary = 8.82 cfs @ 12.80 hrs, Volume= 17.685 af
 Secondary = 47.14 cfs @ 12.80 hrs, Volume= 4.640 af

Routing by Stor-Ind method, Time Span= 0.00-96.00 hrs, dt= 0.01 hrs
 Peak Elev= 3,398.49' @ 12.80 hrs Surf.Area= 1.984 ac Storage= 10.626 af
 Flood Elev= 3,400.49' Surf.Area= 2.160 ac Storage= 14.769 af


Plug-Flow detention time= 545.8 min calculated for 22.323 af (100% of inflow)
 Center-of-Mass det. time= 545.4 min (1,382.9 - 837.6)

Volume	Invert	Avail.Storage	Storage Description		
#1	3,392.02'	14.769 af	Custom Stage Data (Irregular)	Listed below (Recalc)	
Elevation (feet)	Surf.Area (acres)	Perim. (feet)	Inc.Store (acre-feet)	Cum.Store (acre-feet)	Wet.Area (acres)
3,392.02	1.210	1,096.0	0.000	0.000	1.210
3,393.00	1.210	1,096.0	1.186	1.186	1.235
3,394.00	1.590	1,124.0	1.396	2.581	1.351
3,395.00	1.690	1,158.0	1.640	4.221	1.495
3,396.00	1.770	1,190.0	1.730	5.951	1.635
3,397.00	1.860	1,223.0	1.815	7.766	1.783
3,398.00	1.940	1,252.0	1.900	9.666	1.917
3,399.00	2.030	1,280.0	1.985	11.651	2.050
3,399.50	2.070	1,295.0	1.025	12.676	2.122
3,400.49	2.160	1,322.0	2.094	14.769	2.255

Device	Routing	Invert	Outlet Devices								
#1	Secondary	3,398.10'	71.0' long x 1.0' breadth Broad-Crested Rectangular Weir								
			Head (feet) 0.20 0.40 0.60 0.80 1.00 1.20 1.40 1.60 1.80 2.00								
			2.50 3.00								
			Coef. (English) 2.69 2.72 2.75 2.85 2.98 3.08 3.20 3.28 3.31								
			3.30 3.31 3.32								
#2	Primary	3,392.02'	9.0" W x 12.0" H Vert. Orifice/Grate C= 0.600								

Primary OutFlow Max=8.82 cfs @ 12.80 hrs HW=3,398.49' (Free Discharge)
 ↗ 2=Orifice/Grate (Orifice Controls 8.82 cfs @ 11.76 fps)

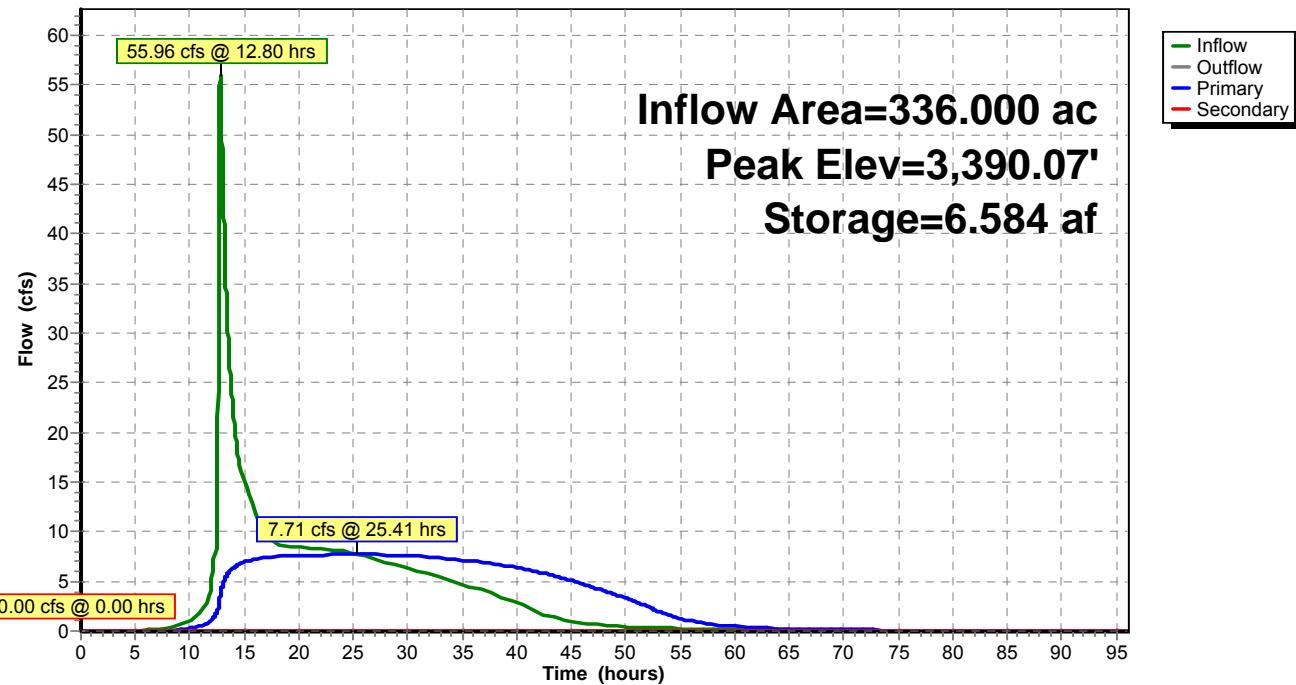
Secondary OutFlow Max=46.91 cfs @ 12.80 hrs HW=3,398.49' (Free Discharge)
 ↗ 1=Broad-Crested Rectangular Weir (Weir Controls 46.91 cfs @ 1.70 fps)

Pond Pond A: Pond A**Hydrograph**

Summary for Pond Pond B: Pond B

Inflow Area = 336.000 ac, 52.98% Impervious, Inflow Depth > 0.80" for 5-Year event
 Inflow = 55.96 cfs @ 12.80 hrs, Volume= 22.325 af
 Outflow = 7.71 cfs @ 25.41 hrs, Volume= 22.307 af, Atten= 86%, Lag= 756.8 min
 Primary = 7.71 cfs @ 25.41 hrs, Volume= 22.307 af
 Secondary = 0.00 cfs @ 0.00 hrs, Volume= 0.000 af

Routing by Stor-Ind method, Time Span= 0.00-96.00 hrs, dt= 0.01 hrs
 Peak Elev= 3,390.07' @ 25.41 hrs Surf.Area= 1.627 ac Storage= 6.584 af
 Flood Elev= 3,393.58' Surf.Area= 1.960 ac Storage= 12.890 af


Plug-Flow detention time= 522.3 min calculated for 22.304 af (100% of inflow)
 Center-of-Mass det. time= 519.0 min (1,901.9 - 1,382.9)

Volume	Invert	Avail.Storage	Storage Description		
#1	3,385.00'	12.890 af	Custom Stage Data (Irregular) Listed below (Recalc)		
Elevation (feet)	Surf.Area (acres)	Perim. (feet)	Inc.Store (acre-feet)	Cum.Store (acre-feet)	Wet.Area (acres)
3,385.00	0.450	906.0	0.000	0.000	0.450
3,386.00	1.160	1,554.0	0.777	0.777	3.362
3,387.00	1.340	1,542.0	1.249	2.026	3.439
3,388.00	1.440	1,585.0	1.390	3.416	3.687
3,389.00	1.530	1,614.0	1.485	4.901	3.861
3,390.00	1.620	1,644.0	1.575	6.476	4.043
3,391.00	1.720	1,671.0	1.670	8.145	4.211
3,392.00	1.810	1,701.0	1.765	9.910	4.400
3,392.50	1.860	1,718.0	0.917	10.828	4.508
3,393.58	1.960	1,752.0	2.063	12.890	4.727

Device	Routing	Invert	Outlet Devices								
#1	Secondary	3,391.00'	71.0' long x 1.0' breadth Broad-Crested Rectangular Weir Head (feet) 0.20 0.40 0.60 0.80 1.00 1.20 1.40 1.60 1.80 2.00 2.50 3.00 Coef. (English) 2.69 2.72 2.75 2.85 2.98 3.08 3.20 3.28 3.31 3.30 3.31 3.32								
#2	Primary	3,385.00'	9.0" W x 12.0" H Vert. Orifice/Grate C= 0.600								

Primary OutFlow Max=7.71 cfs @ 25.41 hrs HW=3,390.07' (Free Discharge)
 ↑ 2=Orifice/Grate (Orifice Controls 7.71 cfs @ 10.28 fps)

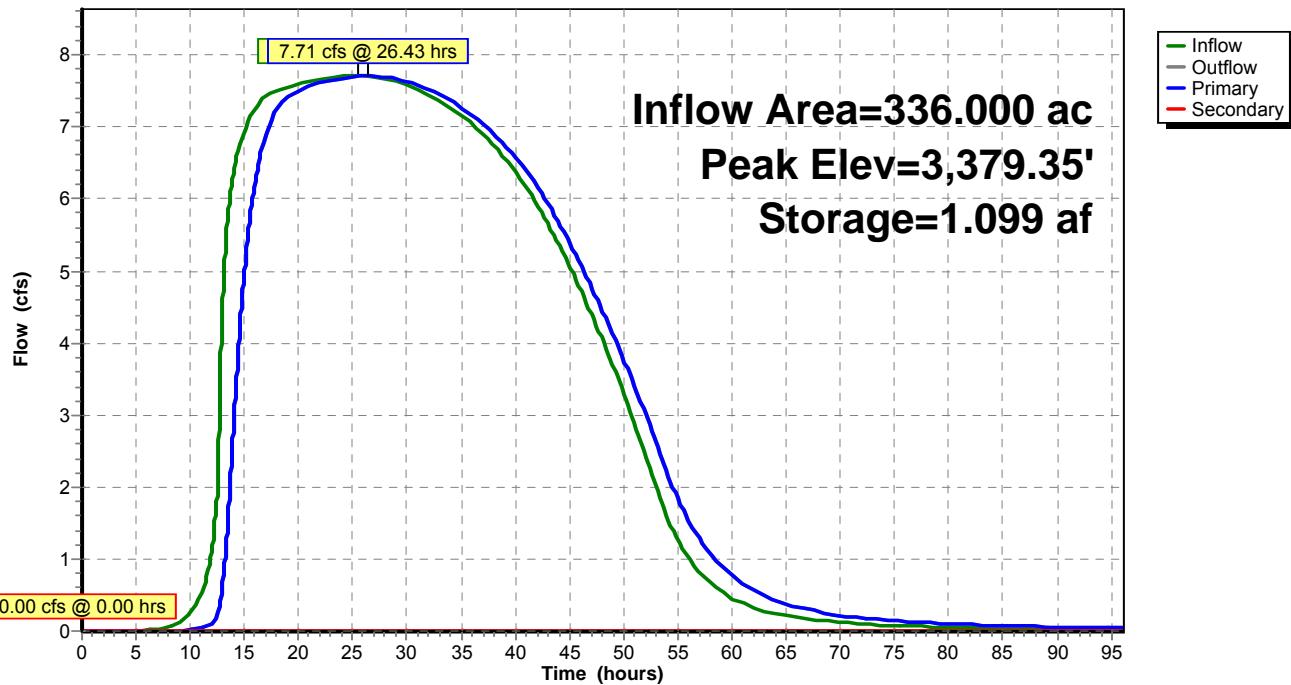
Secondary OutFlow Max=0.00 cfs @ 0.00 hrs HW=3,385.00' (Free Discharge)
 ↑ 1=Broad-Crested Rectangular Weir (Controls 0.00 cfs)

Pond Pond B: Pond B**Hydrograph**

Summary for Pond Pond C: Pond C

Inflow Area = 336.000 ac, 52.98% Impervious, Inflow Depth > 0.80" for 5-Year event
 Inflow = 7.71 cfs @ 25.41 hrs, Volume= 22.307 af
 Outflow = 7.71 cfs @ 26.43 hrs, Volume= 22.235 af, Atten= 0%, Lag= 61.3 min
 Primary = 7.71 cfs @ 26.43 hrs, Volume= 22.235 af
 Secondary = 0.00 cfs @ 0.00 hrs, Volume= 0.000 af

Routing by Stor-Ind method, Time Span= 0.00-96.00 hrs, dt= 0.01 hrs
 Peak Elev= 3,379.35' @ 26.43 hrs Surf.Area= 0.949 ac Storage= 1.099 af
 Flood Elev= 3,386.61' Surf.Area= 1.770 ac Storage= 11.199 af


Plug-Flow detention time= 124.2 min calculated for 22.235 af (100% of inflow)
 Center-of-Mass det. time= 113.9 min (2,015.8 - 1,901.9)

Volume	Invert	Avail.Storage	Storage Description		
#1	3,378.12'	11.199 af	Custom Stage Data (Irregular) Listed below (Recalc)		
Elevation (feet)	Surf.Area (acres)	Perim. (feet)	Inc.Store (acre-feet)	Cum.Store (acre-feet)	Wet.Area (acres)
3,378.12	0.880	1,462.0	0.000	0.000	0.880
3,379.00	0.880	1,462.0	0.774	0.774	0.910
3,380.00	1.080	1,574.0	0.978	1.753	1.532
3,381.00	1.190	1,649.0	1.135	2.887	1.975
3,382.00	1.300	1,687.0	1.245	4.132	2.210
3,383.00	1.400	1,720.0	1.350	5.482	2.419
3,384.00	1.500	1,752.0	1.450	6.931	2.626
3,385.00	1.600	1,765.0	1.550	8.481	2.718
3,385.50	1.660	1,780.0	0.815	9.296	2.818
3,386.61	1.770	1,815.0	1.903	11.199	3.052

Device	Routing	Invert	Outlet Devices								
#1	Secondary	3,384.20'	72.3' long x 0.7' breadth Broad-Crested Rectangular Weir								
			Head (feet) 0.20 0.40 0.60 0.80 1.00 1.20 1.40 1.60 1.80 2.00								
			2.50								
			Coef. (English) 2.76 2.82 2.93 3.09 3.18 3.22 3.27 3.30 3.32								
			3.31 3.32								
#2	Primary	3,378.12'	24.0" Round Culvert								
			L= 464.0' RCP, square edge headwall, Ke= 0.500								
			Inlet / Outlet Invert= 3,378.12' / 3,362.61' S= 0.0334 '/' Cc= 0.900								
			n= 0.012 Concrete pipe, finished, Flow Area= 3.14 sf								

Primary OutFlow Max=7.70 cfs @ 26.43 hrs HW=3,379.35' (Free Discharge)
 ↑ 2=Culvert (Inlet Controls 7.70 cfs @ 3.78 fps)

Secondary OutFlow Max=0.00 cfs @ 0.00 hrs HW=3,378.12' (Free Discharge)
 ↑ 1=Broad-Crested Rectangular Weir (Controls 0.00 cfs)

Pond Pond C: Pond C**Hydrograph**

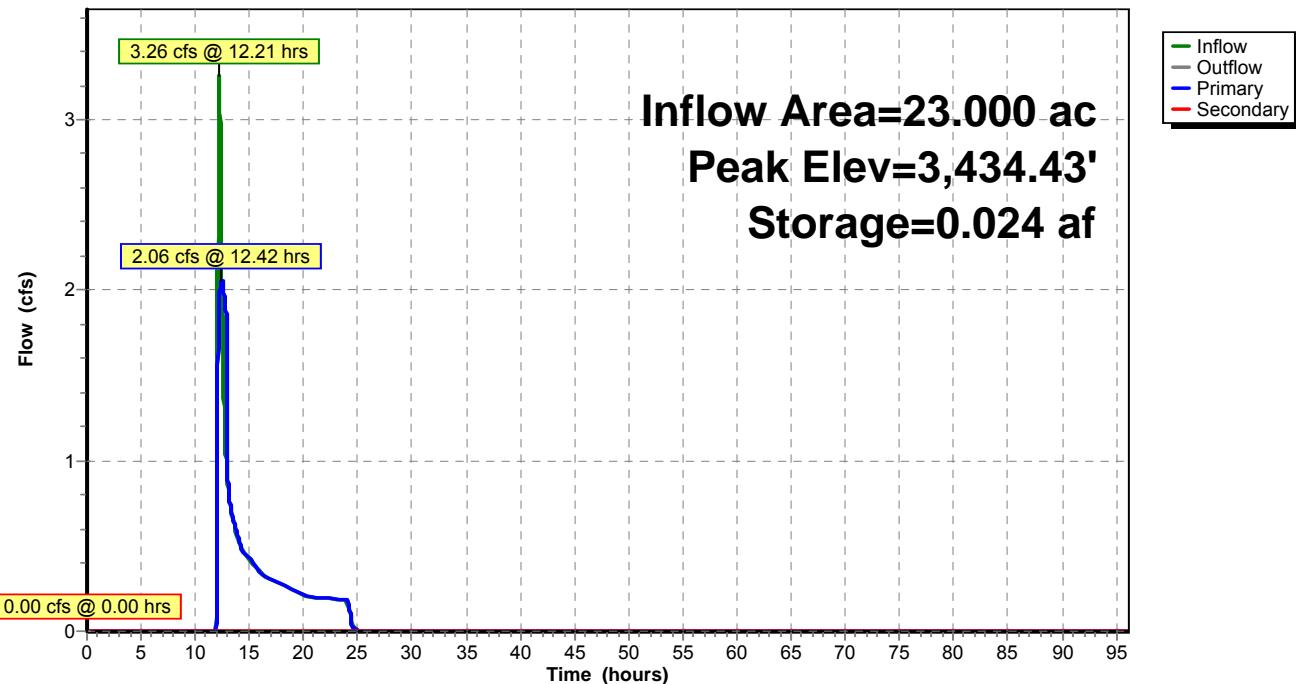
Summary for Pond Pond D: Pond D

Inflow Area = 23.000 ac, 4.35% Impervious, Inflow Depth = 0.23" for 5-Year event
 Inflow = 3.26 cfs @ 12.21 hrs, Volume= 0.435 af
 Outflow = 2.06 cfs @ 12.42 hrs, Volume= 0.435 af, Atten= 37%, Lag= 12.6 min
 Primary = 2.06 cfs @ 12.42 hrs, Volume= 0.435 af
 Secondary = 0.00 cfs @ 0.00 hrs, Volume= 0.000 af

Routing by Stor-Ind method, Time Span= 0.00-96.00 hrs, dt= 0.01 hrs
 Peak Elev= 3,434.43' @ 12.42 hrs Surf.Area= 0.077 ac Storage= 0.024 af
 Flood Elev= 3,443.00' Surf.Area= 0.850 ac Storage= 3.671 af

Plug-Flow detention time= 1.8 min calculated for 0.435 af (100% of inflow)
 Center-of-Mass det. time= 1.8 min (940.2 - 938.4)

Volume	Invert	Avail.Storage	Storage Description		
#1	3,433.00'	3.671 af	Custom Stage Data (Irregular)	Listed below (Recalc)	
Elevation (feet)	Surf.Area (acres)	Perim. (feet)	Inc.Store (acre-feet)	Cum.Store (acre-feet)	Wet.Area (acres)
3,433.00	0.000	0.0	0.000	0.000	0.000
3,433.50	0.001	44.0	0.000	0.000	0.004
3,434.00	0.020	127.0	0.004	0.004	0.029
3,434.50	0.090	260.0	0.025	0.030	0.124
3,435.00	0.170	370.0	0.064	0.094	0.250
3,435.50	0.260	434.0	0.107	0.200	0.344
3,436.00	0.310	481.0	0.142	0.343	0.423
3,436.50	0.340	529.0	0.162	0.505	0.512
3,437.00	0.360	540.0	0.175	0.680	0.534
3,437.50	0.380	556.0	0.185	0.865	0.567
3,438.00	0.400	585.0	0.195	1.060	0.628
3,438.50	0.420	590.0	0.205	1.265	0.640
3,439.00	0.440	598.0	0.215	1.480	0.659
3,439.50	0.460	613.0	0.225	1.705	0.693
3,440.00	0.480	639.0	0.235	1.940	0.753
3,440.50	0.510	666.0	0.247	2.188	0.818
3,441.00	0.530	694.0	0.260	2.448	0.888
3,441.50	0.550	721.0	0.270	2.718	0.958
3,442.00	0.580	755.0	0.282	3.000	1.050
3,442.50	0.630	806.0	0.302	3.302	1.196
3,443.00	0.850	826.0	0.369	3.671	1.256


Device	Routing	Invert	Outlet Devices	
#1	Primary	3,433.00'	10.0" Round Culvert	
			L= 128.0' RCP, sq.cut end projecting, Ke= 0.500 Inlet / Outlet Invert= 3,433.00' / 3,432.13' S= 0.0068 '/' Cc= 0.900 n= 0.013 Cast iron, coated, Flow Area= 0.55 sf	
#2	Secondary	3,438.31'	60.0" Horiz. Orifice/Grate C= 0.600 Limited to weir flow at low heads	

Primary OutFlow Max=2.06 cfs @ 12.42 hrs HW=3,434.43' (Free Discharge)
 ↗ 1=Culvert (Barrel Controls 2.06 cfs @ 3.78 fps)

Secondary OutFlow Max=0.00 cfs @ 0.00 hrs HW=3,433.00' (Free Discharge)
 ↗ 2=Orifice/Grate (Controls 0.00 cfs)

Pond Pond D: Pond D

Hydrograph

Summary for Pond Pond E: Pond E

[79] Warning: Submerged Pond 404 Primary device # 1 OUTLET by 1.41'

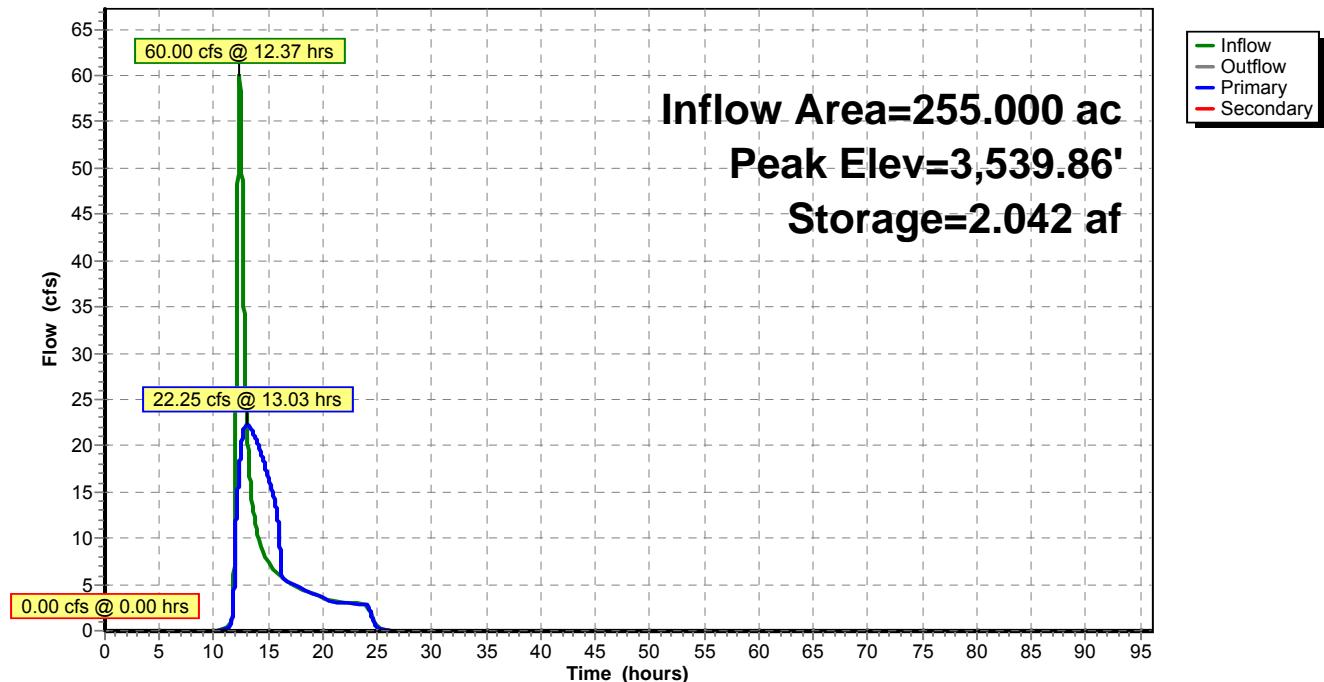
Inflow Area = 255.000 ac, 25.49% Impervious, Inflow Depth = 0.42" for 5-Year event
 Inflow = 60.00 cfs @ 12.37 hrs, Volume= 8.935 af
 Outflow = 22.25 cfs @ 13.03 hrs, Volume= 8.935 af, Atten= 63%, Lag= 39.6 min
 Primary = 22.25 cfs @ 13.03 hrs, Volume= 8.935 af
 Secondary = 0.00 cfs @ 0.00 hrs, Volume= 0.000 af

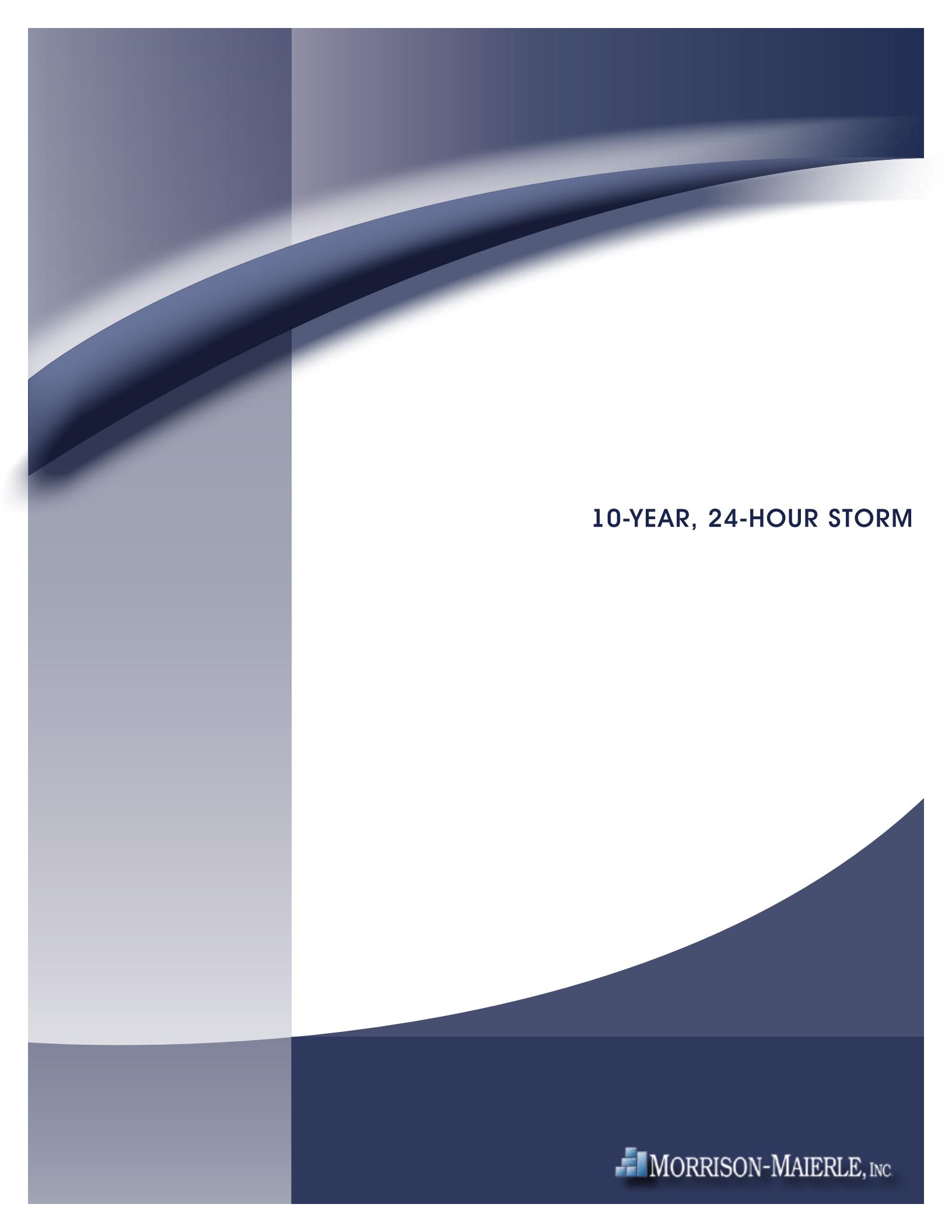
Routing by Stor-Ind method, Time Span= 0.00-96.00 hrs, dt= 0.01 hrs
 Peak Elev= 3,539.86' @ 13.03 hrs Surf.Area= 1.541 ac Storage= 2.042 af
 Flood Elev= 3,545.65' Surf.Area= 1.951 ac Storage= 12.146 af

Plug-Flow detention time= 30.4 min calculated for 8.934 af (100% of inflow)
 Center-of-Mass det. time= 30.4 min (936.2 - 905.8)

Volume	Invert	Avail.Storage	Storage Description		
#1	3,536.70'	15.883 af	Custom Stage Data (Irregular)	Listed below (Recalc)	
Elevation (feet)	Surf.Area (acres)	Perim. (feet)	Inc.Store (acre-feet)	Cum.Store (acre-feet)	Wet.Area (acres)
3,536.70	0.000	0.0	0.000	0.000	0.000
3,537.50	0.020	12.0	0.005	0.005	0.000
3,538.00	0.060	271.0	0.019	0.024	0.134
3,538.50	0.900	814.0	0.199	0.223	1.211
3,539.00	1.350	996.0	0.559	0.782	1.812
3,539.50	1.490	1,032.0	0.710	1.492	1.946
3,540.00	1.560	1,070.0	0.762	2.254	2.093
3,540.50	1.590	1,083.0	0.787	3.042	2.145
3,541.00	1.620	1,098.0	0.802	3.844	2.206
3,541.50	1.660	1,111.0	0.820	4.664	2.260
3,542.00	1.690	1,122.0	0.837	5.501	2.307
3,542.50	1.730	1,134.0	0.855	6.356	2.358
3,543.00	1.760	1,146.0	0.872	7.229	2.410
3,543.50	1.800	1,158.0	0.890	8.119	2.462
3,544.00	1.830	1,169.0	0.907	9.026	2.511
3,544.50	1.870	1,180.0	0.925	9.951	2.560
3,545.00	1.900	1,191.0	0.942	10.894	2.609
3,545.50	1.940	1,202.0	0.960	11.854	2.659
3,547.50	2.090	1,244.0	4.029	15.883	2.855

Device	Routing	Invert	Outlet Devices
#1	Primary	3,536.70'	24.0" Round Culvert L= 177.0' RCP, square edge headwall, Ke= 0.500 Inlet / Outlet Invert= 3,536.70' / 3,526.41' S= 0.0581 '/' Cc= 0.900 n= 0.012 Concrete pipe, finished, Flow Area= 3.14 sf
#2	Secondary	3,545.65'	71.0' long x 1.0' breadth Broad-Crested Rectangular Weir Head (feet) 0.20 0.40 0.60 0.80 1.00 1.20 1.40 1.60 1.80 2.00 2.50 3.00 Coef. (English) 2.69 2.72 2.75 2.85 2.98 3.08 3.20 3.28 3.31


3.30 3.31 3.32


Primary OutFlow Max=22.25 cfs @ 13.03 hrs HW=3,539.86' (Free Discharge)
 ↑
 1=Culvert (Inlet Controls 22.25 cfs @ 7.08 fps)

Secondary OutFlow Max=0.00 cfs @ 0.00 hrs HW=3,536.70' (Free Discharge)
 ↑
 2=Broad-Crested Rectangular Weir (Controls 0.00 cfs)

Pond Pond E: Pond E

Hydrograph

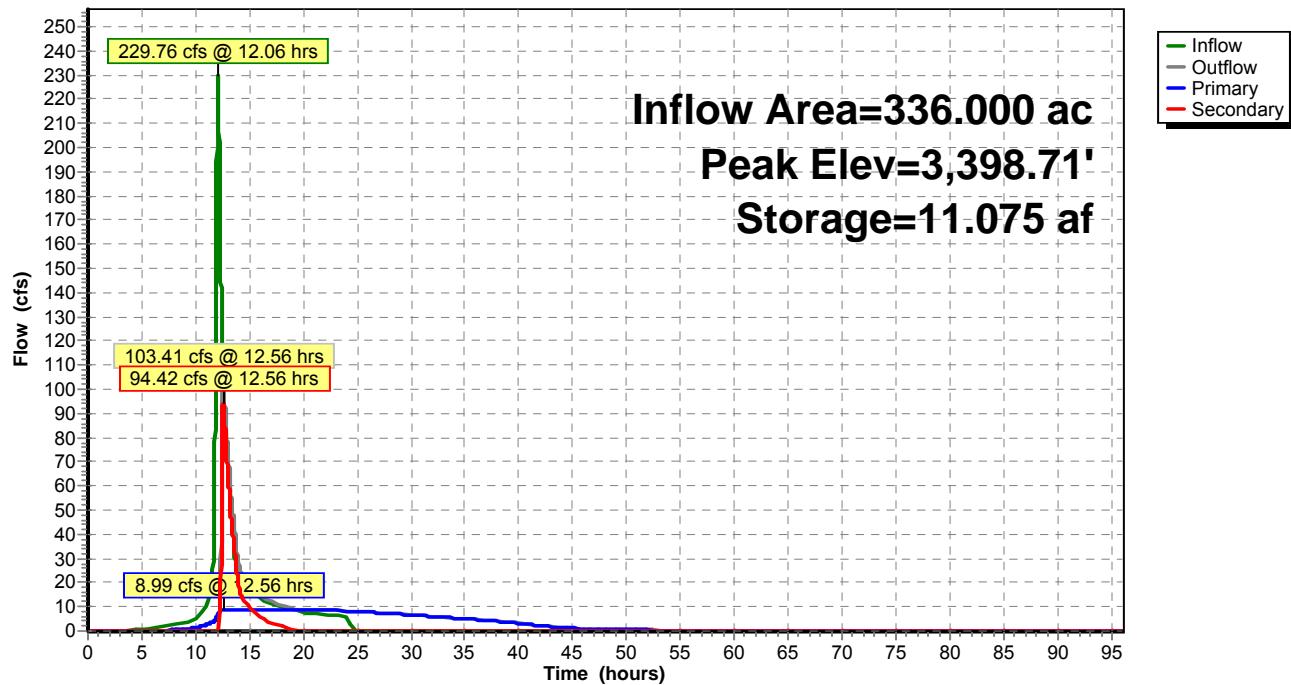
10-YEAR, 24-HOUR STORM

Summary for Pond Pond A: Pond A

[79] Warning: Submerged Pond 107 Primary device # 1 OUTLET by 1.53'

Inflow Area = 336.000 ac, 52.98% Impervious, Inflow Depth = 1.02" for 10-Year event
 Inflow = 229.76 cfs @ 12.06 hrs, Volume= 28.453 af
 Outflow = 103.41 cfs @ 12.56 hrs, Volume= 28.423 af, Atten= 55%, Lag= 29.7 min
 Primary = 8.99 cfs @ 12.56 hrs, Volume= 18.547 af
 Secondary = 94.42 cfs @ 12.56 hrs, Volume= 9.875 af

Routing by Stor-Ind method, Time Span= 0.00-96.00 hrs, dt= 0.01 hrs
 Peak Elev= 3,398.71' @ 12.56 hrs Surf.Area= 2.004 ac Storage= 11.075 af
 Flood Elev= 3,400.49' Surf.Area= 2.160 ac Storage= 14.769 af


Plug-Flow detention time= 454.5 min calculated for 28.423 af (100% of inflow)
 Center-of-Mass det. time= 453.8 min (1,288.8 - 834.9)

Volume	Invert	Avail.Storage	Storage Description		
#1	3,392.02'	14.769 af	Custom Stage Data (Irregular)	Listed below (Recalc)	
Elevation (feet)	Surf.Area (acres)	Perim. (feet)	Inc.Store (acre-feet)	Cum.Store (acre-feet)	Wet.Area (acres)
3,392.02	1.210	1,096.0	0.000	0.000	1.210
3,393.00	1.210	1,096.0	1.186	1.186	1.235
3,394.00	1.590	1,124.0	1.396	2.581	1.351
3,395.00	1.690	1,158.0	1.640	4.221	1.495
3,396.00	1.770	1,190.0	1.730	5.951	1.635
3,397.00	1.860	1,223.0	1.815	7.766	1.783
3,398.00	1.940	1,252.0	1.900	9.666	1.917
3,399.00	2.030	1,280.0	1.985	11.651	2.050
3,399.50	2.070	1,295.0	1.025	12.676	2.122
3,400.49	2.160	1,322.0	2.094	14.769	2.255

Device	Routing	Invert	Outlet Devices								
#1	Secondary	3,398.10'	71.0' long x 1.0' breadth Broad-Crested Rectangular Weir								
			Head (feet) 0.20 0.40 0.60 0.80 1.00 1.20 1.40 1.60 1.80 2.00								
			2.50 3.00								
			Coef. (English) 2.69 2.72 2.75 2.85 2.98 3.08 3.20 3.28 3.31								
			3.30 3.31 3.32								
#2	Primary	3,392.02'	9.0" W x 12.0" H Vert. Orifice/Grate C= 0.600								

Primary OutFlow Max=8.99 cfs @ 12.56 hrs HW=3,398.71' (Free Discharge)
 ↗ 2=Orifice/Grate (Orifice Controls 8.99 cfs @ 11.98 fps)

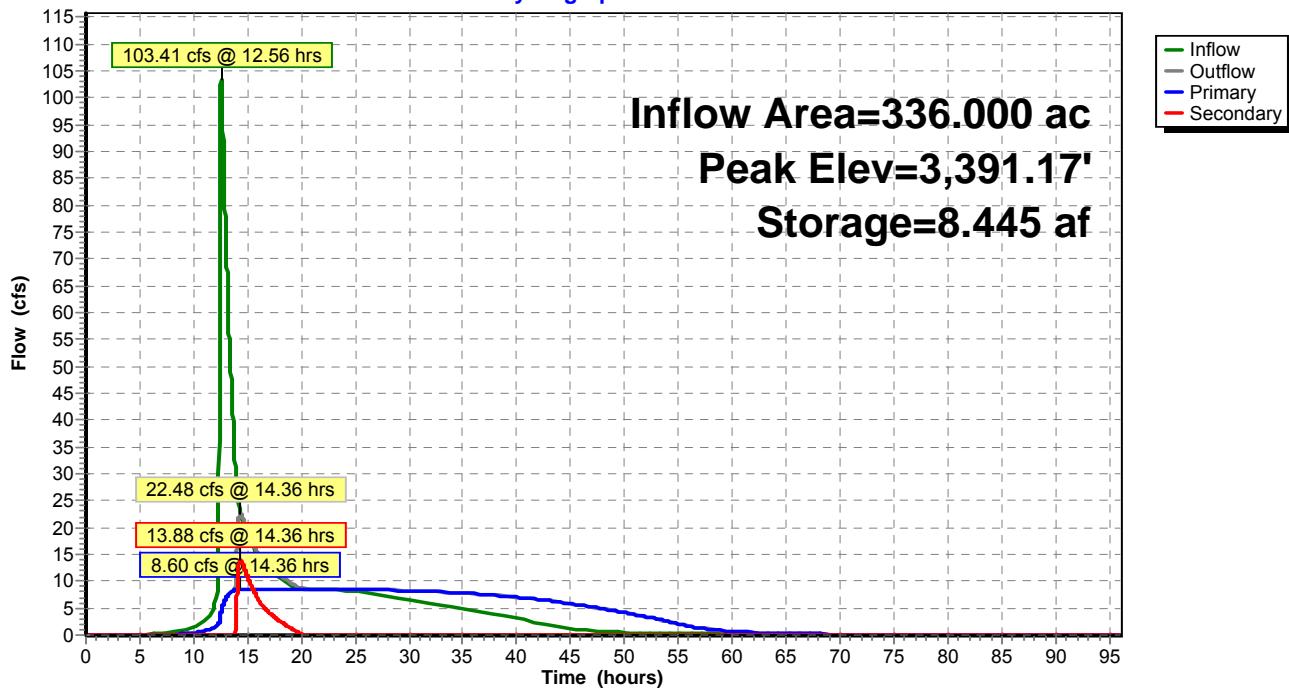
Secondary OutFlow Max=94.37 cfs @ 12.56 hrs HW=3,398.71' (Free Discharge)
 ↗ 1=Broad-Crested Rectangular Weir (Weir Controls 94.37 cfs @ 2.16 fps)

Pond Pond A: Pond A**Hydrograph**

Summary for Pond Pond B: Pond B

Inflow Area = 336.000 ac, 52.98% Impervious, Inflow Depth > 1.02" for 10-Year event
 Inflow = 103.41 cfs @ 12.56 hrs, Volume= 28.423 af
 Outflow = 22.48 cfs @ 14.36 hrs, Volume= 28.403 af, Atten= 78%, Lag= 107.9 min
 Primary = 8.60 cfs @ 14.36 hrs, Volume= 25.701 af
 Secondary = 13.88 cfs @ 14.36 hrs, Volume= 2.703 af

Routing by Stor-Ind method, Time Span= 0.00-96.00 hrs, dt= 0.01 hrs
 Peak Elev= 3,391.17' @ 14.36 hrs Surf.Area= 1.735 ac Storage= 8.445 af
 Flood Elev= 3,393.58' Surf.Area= 1.960 ac Storage= 12.890 af


Plug-Flow detention time= 534.3 min calculated for 28.400 af (100% of inflow)
 Center-of-Mass det. time= 531.5 min (1,820.3 - 1,288.8)

Volume	Invert	Avail.Storage	Storage Description		
#1	3,385.00'	12.890 af	Custom Stage Data (Irregular) Listed below (Recalc)		
Elevation (feet)	Surf.Area (acres)	Perim. (feet)	Inc.Store (acre-feet)	Cum.Store (acre-feet)	Wet.Area (acres)
3,385.00	0.450	906.0	0.000	0.000	0.450
3,386.00	1.160	1,554.0	0.777	0.777	3.362
3,387.00	1.340	1,542.0	1.249	2.026	3.439
3,388.00	1.440	1,585.0	1.390	3.416	3.687
3,389.00	1.530	1,614.0	1.485	4.901	3.861
3,390.00	1.620	1,644.0	1.575	6.476	4.043
3,391.00	1.720	1,671.0	1.670	8.145	4.211
3,392.00	1.810	1,701.0	1.765	9.910	4.400
3,392.50	1.860	1,718.0	0.917	10.828	4.508
3,393.58	1.960	1,752.0	2.063	12.890	4.727

Device	Routing	Invert	Outlet Devices								
#1	Secondary	3,391.00'	71.0' long x 1.0' breadth Broad-Crested Rectangular Weir Head (feet) 0.20 0.40 0.60 0.80 1.00 1.20 1.40 1.60 1.80 2.00 2.50 3.00 Coef. (English) 2.69 2.72 2.75 2.85 2.98 3.08 3.20 3.28 3.31 3.30 3.31 3.32								
#2	Primary	3,385.00'	9.0" W x 12.0" H Vert. Orifice/Grate C= 0.600								

Primary OutFlow Max=8.60 cfs @ 14.36 hrs HW=3,391.17' (Free Discharge)
 ↑ 2=Orifice/Grate (Orifice Controls 8.60 cfs @ 11.47 fps)

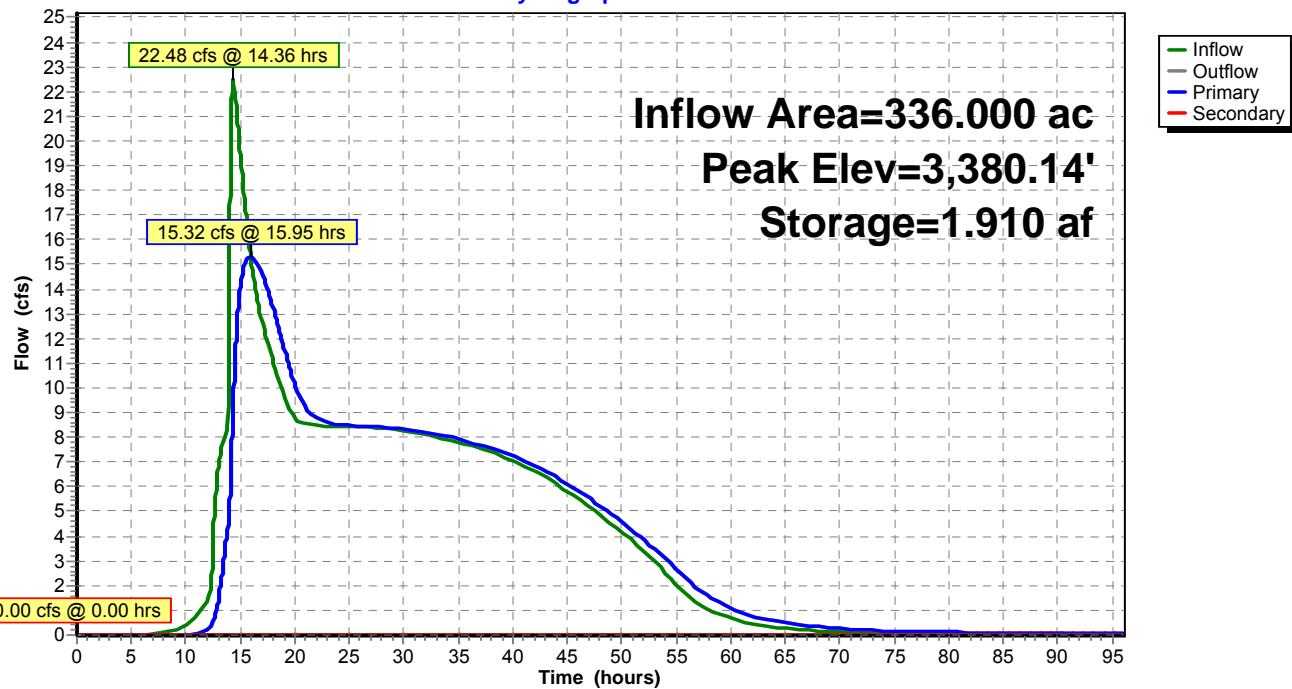
Secondary OutFlow Max=13.82 cfs @ 14.36 hrs HW=3,391.17' (Free Discharge)
 ↑ 1=Broad-Crested Rectangular Weir (Weir Controls 13.82 cfs @ 1.12 fps)

Pond Pond B: Pond B**Hydrograph**

Summary for Pond Pond C: Pond C

Inflow Area = 336.000 ac, 52.98% Impervious, Inflow Depth > 1.01" for 10-Year event
 Inflow = 22.48 cfs @ 14.36 hrs, Volume= 28.403 af
 Outflow = 15.32 cfs @ 15.95 hrs, Volume= 28.330 af, Atten= 32%, Lag= 95.5 min
 Primary = 15.32 cfs @ 15.95 hrs, Volume= 28.330 af
 Secondary = 0.00 cfs @ 0.00 hrs, Volume= 0.000 af

Routing by Stor-Ind method, Time Span= 0.00-96.00 hrs, dt= 0.01 hrs
 Peak Elev= 3,380.14' @ 15.95 hrs Surf.Area= 1.096 ac Storage= 1.910 af
 Flood Elev= 3,386.61' Surf.Area= 1.770 ac Storage= 11.199 af


Plug-Flow detention time= 114.0 min calculated for 28.330 af (100% of inflow)
 Center-of-Mass det. time= 105.5 min (1,925.8 - 1,820.3)

Volume	Invert	Avail.Storage	Storage Description		
#1	3,378.12'	11.199 af	Custom Stage Data (Irregular) Listed below (Recalc)		
Elevation (feet)	Surf.Area (acres)	Perim. (feet)	Inc.Store (acre-feet)	Cum.Store (acre-feet)	Wet.Area (acres)
3,378.12	0.880	1,462.0	0.000	0.000	0.880
3,379.00	0.880	1,462.0	0.774	0.774	0.910
3,380.00	1.080	1,574.0	0.978	1.753	1.532
3,381.00	1.190	1,649.0	1.135	2.887	1.975
3,382.00	1.300	1,687.0	1.245	4.132	2.210
3,383.00	1.400	1,720.0	1.350	5.482	2.419
3,384.00	1.500	1,752.0	1.450	6.931	2.626
3,385.00	1.600	1,765.0	1.550	8.481	2.718
3,385.50	1.660	1,780.0	0.815	9.296	2.818
3,386.61	1.770	1,815.0	1.903	11.199	3.052

Device	Routing	Invert	Outlet Devices								
#1	Secondary	3,384.20'	72.3' long x 0.7' breadth Broad-Crested Rectangular Weir								
			Head (feet) 0.20 0.40 0.60 0.80 1.00 1.20 1.40 1.60 1.80 2.00								
			2.50								
			Coef. (English) 2.76 2.82 2.93 3.09 3.18 3.22 3.27 3.30 3.32								
			3.31 3.32								
#2	Primary	3,378.12'	24.0" Round Culvert								
			L= 464.0' RCP, square edge headwall, Ke= 0.500								
			Inlet / Outlet Invert= 3,378.12' / 3,362.61' S= 0.0334 '/' Cc= 0.900								
			n= 0.012 Concrete pipe, finished, Flow Area= 3.14 sf								

Primary OutFlow Max=15.31 cfs @ 15.95 hrs HW=3,380.14' (Free Discharge)
 ↑ 2=Culvert (Inlet Controls 15.31 cfs @ 4.87 fps)

Secondary OutFlow Max=0.00 cfs @ 0.00 hrs HW=3,378.12' (Free Discharge)
 ↑ 1=Broad-Crested Rectangular Weir (Controls 0.00 cfs)

Pond Pond C: Pond C**Hydrograph**

Summary for Pond Pond D: Pond D

Inflow Area = 23.000 ac, 4.35% Impervious, Inflow Depth = 0.35" for 10-Year event
 Inflow = 6.14 cfs @ 12.19 hrs, Volume= 0.671 af
 Outflow = 2.43 cfs @ 12.57 hrs, Volume= 0.671 af, Atten= 60%, Lag= 22.8 min
 Primary = 2.43 cfs @ 12.57 hrs, Volume= 0.671 af
 Secondary = 0.00 cfs @ 0.00 hrs, Volume= 0.000 af

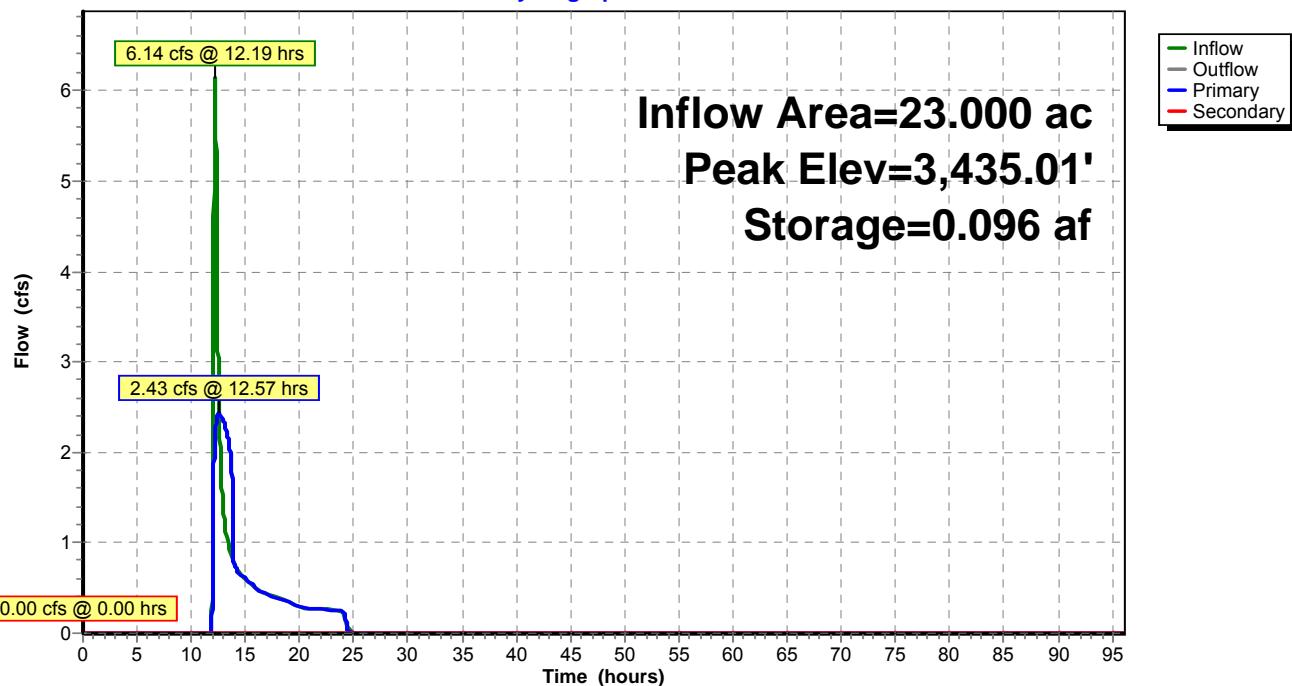
Routing by Stor-Ind method, Time Span= 0.00-96.00 hrs, dt= 0.01 hrs
 Peak Elev= 3,435.01' @ 12.57 hrs Surf.Area= 0.172 ac Storage= 0.096 af
 Flood Elev= 3,443.00' Surf.Area= 0.850 ac Storage= 3.671 af

Plug-Flow detention time= 8.9 min calculated for 0.671 af (100% of inflow)
 Center-of-Mass det. time= 8.9 min (927.2 - 918.3)

Volume	Invert	Avail.Storage	Storage Description		
#1	3,433.00'	3.671 af	Custom Stage Data (Irregular)	Listed below (Recalc)	
Elevation (feet)	Surf.Area (acres)	Perim. (feet)	Inc.Store (acre-feet)	Cum.Store (acre-feet)	Wet.Area (acres)
3,433.00	0.000	0.0	0.000	0.000	0.000
3,433.50	0.001	44.0	0.000	0.000	0.004
3,434.00	0.020	127.0	0.004	0.004	0.029
3,434.50	0.090	260.0	0.025	0.030	0.124
3,435.00	0.170	370.0	0.064	0.094	0.250
3,435.50	0.260	434.0	0.107	0.200	0.344
3,436.00	0.310	481.0	0.142	0.343	0.423
3,436.50	0.340	529.0	0.162	0.505	0.512
3,437.00	0.360	540.0	0.175	0.680	0.534
3,437.50	0.380	556.0	0.185	0.865	0.567
3,438.00	0.400	585.0	0.195	1.060	0.628
3,438.50	0.420	590.0	0.205	1.265	0.640
3,439.00	0.440	598.0	0.215	1.480	0.659
3,439.50	0.460	613.0	0.225	1.705	0.693
3,440.00	0.480	639.0	0.235	1.940	0.753
3,440.50	0.510	666.0	0.247	2.188	0.818
3,441.00	0.530	694.0	0.260	2.448	0.888
3,441.50	0.550	721.0	0.270	2.718	0.958
3,442.00	0.580	755.0	0.282	3.000	1.050
3,442.50	0.630	806.0	0.302	3.302	1.196
3,443.00	0.850	826.0	0.369	3.671	1.256

Device	Routing	Invert	Outlet Devices	
#1	Primary	3,433.00'	10.0" Round Culvert	
			L= 128.0' RCP, sq.cut end projecting, Ke= 0.500 Inlet / Outlet Invert= 3,433.00' / 3,432.13' S= 0.0068 '/' Cc= 0.900 n= 0.013 Cast iron, coated, Flow Area= 0.55 sf	
#2	Secondary	3,438.31'	60.0" Horiz. Orifice/Grate C= 0.600 Limited to weir flow at low heads	

Primary OutFlow Max=2.43 cfs @ 12.57 hrs HW=3,435.01' (Free Discharge)


1=Culvert (Barrel Controls 2.43 cfs @ 4.46 fps)

Secondary OutFlow Max=0.00 cfs @ 0.00 hrs HW=3,433.00' (Free Discharge)

2=Orifice/Grate (Controls 0.00 cfs)

Pond Pond D: Pond D

Hydrograph

Summary for Pond Pond E: Pond E

[79] Warning: Submerged Pond 404 Primary device # 1 INLET by 0.52'

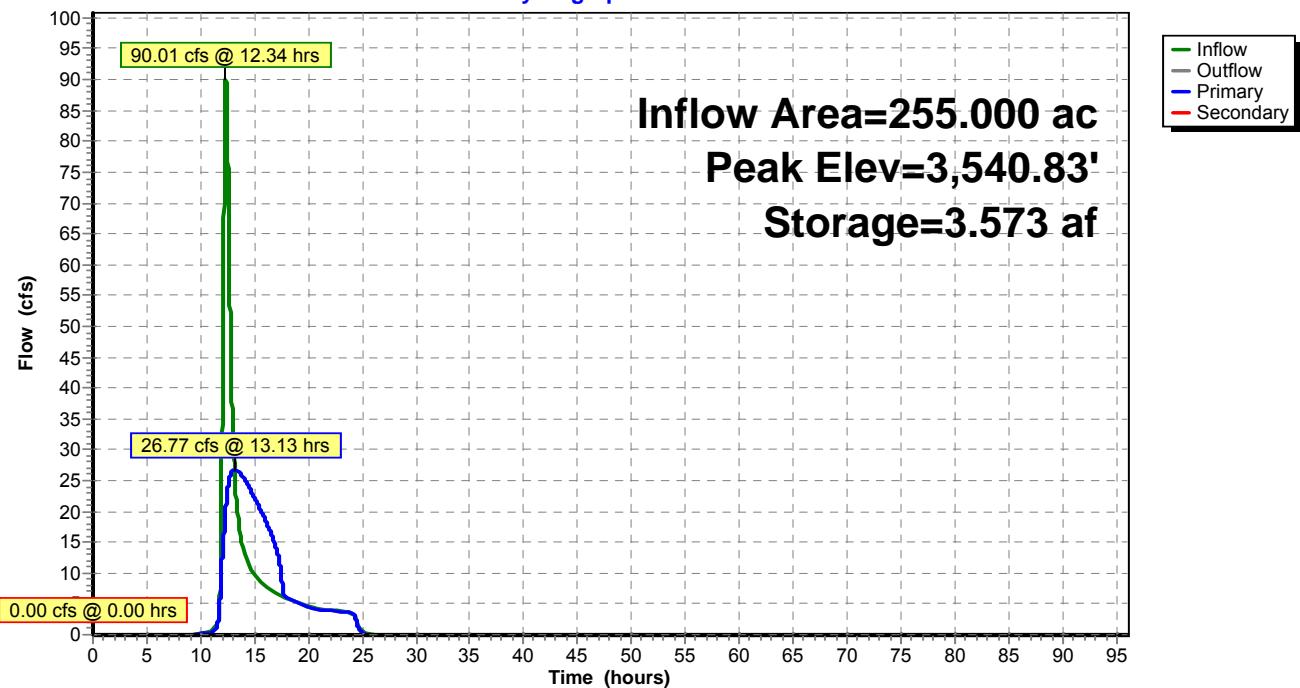
Inflow Area = 255.000 ac, 25.49% Impervious, Inflow Depth = 0.59" for 10-Year event
 Inflow = 90.01 cfs @ 12.34 hrs, Volume= 12.452 af
 Outflow = 26.77 cfs @ 13.13 hrs, Volume= 12.452 af, Atten= 70%, Lag= 47.3 min
 Primary = 26.77 cfs @ 13.13 hrs, Volume= 12.452 af
 Secondary = 0.00 cfs @ 0.00 hrs, Volume= 0.000 af

Routing by Stor-Ind method, Time Span= 0.00-96.00 hrs, dt= 0.01 hrs
 Peak Elev= 3,540.83' @ 13.13 hrs Surf.Area= 1.610 ac Storage= 3.573 af
 Flood Elev= 3,545.65' Surf.Area= 1.951 ac Storage= 12.146 af

Plug-Flow detention time= 50.0 min calculated for 12.452 af (100% of inflow)
 Center-of-Mass det. time= 50.0 min (944.6 - 894.6)

Volume	Invert	Avail.Storage	Storage Description		
#1	3,536.70'	15.883 af	Custom Stage Data (Irregular)	Listed below (Recalc)	
Elevation (feet)	Surf.Area (acres)	Perim. (feet)	Inc.Store (acre-feet)	Cum.Store (acre-feet)	Wet.Area (acres)
3,536.70	0.000	0.0	0.000	0.000	0.000
3,537.50	0.020	12.0	0.005	0.005	0.000
3,538.00	0.060	271.0	0.019	0.024	0.134
3,538.50	0.900	814.0	0.199	0.223	1.211
3,539.00	1.350	996.0	0.559	0.782	1.812
3,539.50	1.490	1,032.0	0.710	1.492	1.946
3,540.00	1.560	1,070.0	0.762	2.254	2.093
3,540.50	1.590	1,083.0	0.787	3.042	2.145
3,541.00	1.620	1,098.0	0.802	3.844	2.206
3,541.50	1.660	1,111.0	0.820	4.664	2.260
3,542.00	1.690	1,122.0	0.837	5.501	2.307
3,542.50	1.730	1,134.0	0.855	6.356	2.358
3,543.00	1.760	1,146.0	0.872	7.229	2.410
3,543.50	1.800	1,158.0	0.890	8.119	2.462
3,544.00	1.830	1,169.0	0.907	9.026	2.511
3,544.50	1.870	1,180.0	0.925	9.951	2.560
3,545.00	1.900	1,191.0	0.942	10.894	2.609
3,545.50	1.940	1,202.0	0.960	11.854	2.659
3,547.50	2.090	1,244.0	4.029	15.883	2.855

Device	Routing	Invert	Outlet Devices	
#1	Primary	3,536.70'	24.0" Round Culvert	
			L= 177.0' RCP, square edge headwall, Ke= 0.500 Inlet / Outlet Invert= 3,536.70' / 3,526.41' S= 0.0581 '/' Cc= 0.900 n= 0.012 Concrete pipe, finished, Flow Area= 3.14 sf	
#2	Secondary	3,545.65'	71.0' long x 1.0' breadth Broad-Crested Rectangular Weir Head (feet) 0.20 0.40 0.60 0.80 1.00 1.20 1.40 1.60 1.80 2.00 2.50 3.00 Coef. (English) 2.69 2.72 2.75 2.85 2.98 3.08 3.20 3.28 3.31	


3.30 3.31 3.32

Primary OutFlow Max=26.77 cfs @ 13.13 hrs HW=3,540.83' (Free Discharge)
 ↑
 1=Culvert (Inlet Controls 26.77 cfs @ 8.52 fps)

Secondary OutFlow Max=0.00 cfs @ 0.00 hrs HW=3,536.70' (Free Discharge)
 ↑
 2=Broad-Crested Rectangular Weir (Controls 0.00 cfs)

Pond Pond E: Pond E

Hydrograph

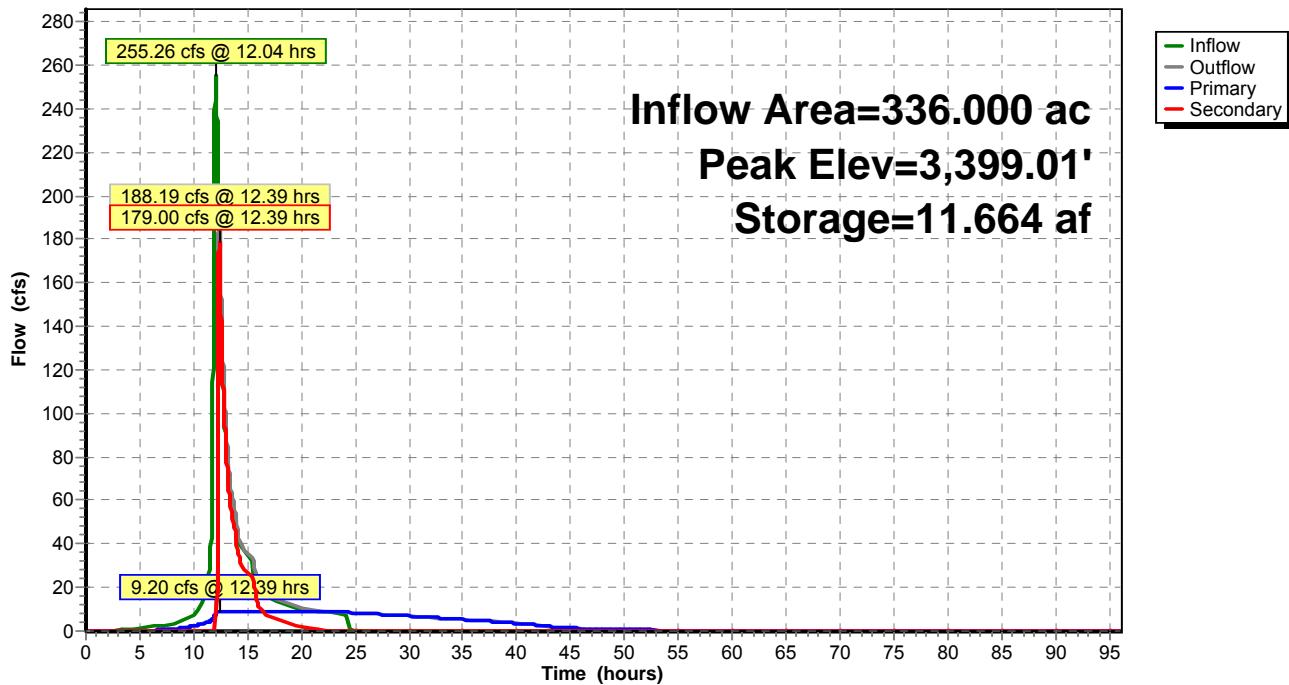
25-YEAR, 24-HOUR STORM

Summary for Pond Pond A: Pond A

[79] Warning: Submerged Pond 107 Primary device # 1 OUTLET by 1.83'

Inflow Area = 336.000 ac, 52.98% Impervious, Inflow Depth = 1.40" for 25-Year event
 Inflow = 255.26 cfs @ 12.04 hrs, Volume= 39.265 af
 Outflow = 188.19 cfs @ 12.39 hrs, Volume= 39.233 af, Atten= 26%, Lag= 21.2 min
 Primary = 9.20 cfs @ 12.39 hrs, Volume= 19.573 af
 Secondary = 179.00 cfs @ 12.39 hrs, Volume= 19.660 af

Routing by Stor-Ind method, Time Span= 0.00-96.00 hrs, dt= 0.01 hrs
 Peak Elev= 3,399.01' @ 12.39 hrs Surf.Area= 2.031 ac Storage= 11.664 af
 Flood Elev= 3,400.49' Surf.Area= 2.160 ac Storage= 14.769 af


Plug-Flow detention time= 350.1 min calculated for 39.229 af (100% of inflow)
 Center-of-Mass det. time= 350.0 min (1,186.1 - 836.1)

Volume	Invert	Avail.Storage	Storage Description		
#1	3,392.02'	14.769 af	Custom Stage Data (Irregular)	Listed below (Recalc)	
Elevation (feet)	Surf.Area (acres)	Perim. (feet)	Inc.Store (acre-feet)	Cum.Store (acre-feet)	Wet.Area (acres)
3,392.02	1.210	1,096.0	0.000	0.000	1.210
3,393.00	1.210	1,096.0	1.186	1.186	1.235
3,394.00	1.590	1,124.0	1.396	2.581	1.351
3,395.00	1.690	1,158.0	1.640	4.221	1.495
3,396.00	1.770	1,190.0	1.730	5.951	1.635
3,397.00	1.860	1,223.0	1.815	7.766	1.783
3,398.00	1.940	1,252.0	1.900	9.666	1.917
3,399.00	2.030	1,280.0	1.985	11.651	2.050
3,399.50	2.070	1,295.0	1.025	12.676	2.122
3,400.49	2.160	1,322.0	2.094	14.769	2.255

Device	Routing	Invert	Outlet Devices								
#1	Secondary	3,398.10'	71.0' long x 1.0' breadth Broad-Crested Rectangular Weir								
			Head (feet) 0.20 0.40 0.60 0.80 1.00 1.20 1.40 1.60 1.80 2.00								
			2.50 3.00								
			Coef. (English) 2.69 2.72 2.75 2.85 2.98 3.08 3.20 3.28 3.31								
			3.30 3.31 3.32								
#2	Primary	3,392.02'	9.0" W x 12.0" H Vert. Orifice/Grate C= 0.600								

Primary OutFlow Max=9.20 cfs @ 12.39 hrs HW=3,399.01' (Free Discharge)
 ↗ 2=Orifice/Grate (Orifice Controls 9.20 cfs @ 12.26 fps)

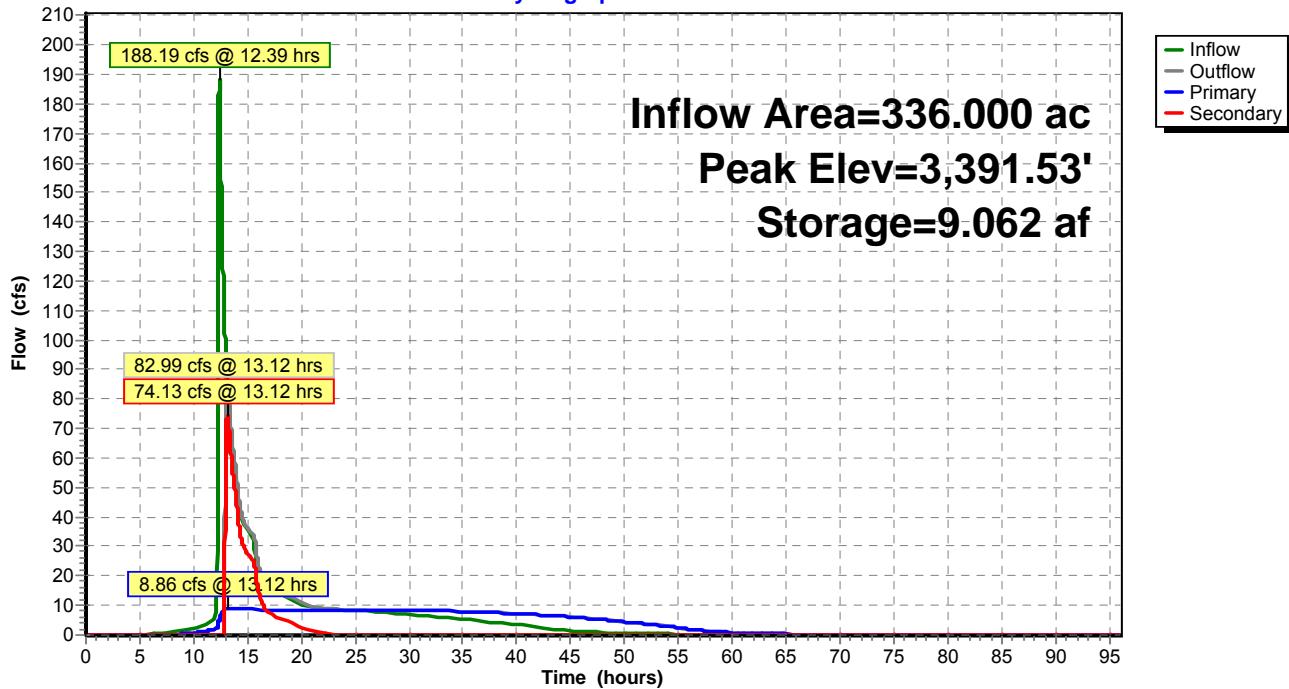
Secondary OutFlow Max=178.95 cfs @ 12.39 hrs HW=3,399.01' (Free Discharge)
 ↗ 1=Broad-Crested Rectangular Weir (Weir Controls 178.95 cfs @ 2.78 fps)

Pond Pond A: Pond A**Hydrograph**

Summary for Pond Pond B: Pond B

Inflow Area = 336.000 ac, 52.98% Impervious, Inflow Depth = 1.40" for 25-Year event
 Inflow = 188.19 cfs @ 12.39 hrs, Volume= 39.233 af
 Outflow = 82.99 cfs @ 13.12 hrs, Volume= 39.213 af, Atten= 56%, Lag= 44.1 min
 Primary = 8.86 cfs @ 13.12 hrs, Volume= 26.727 af
 Secondary = 74.13 cfs @ 13.12 hrs, Volume= 12.486 af

Routing by Stor-Ind method, Time Span= 0.00-96.00 hrs, dt= 0.01 hrs
 Peak Elev= 3,391.53' @ 13.12 hrs Surf.Area= 1.767 ac Storage= 9.062 af
 Flood Elev= 3,393.58' Surf.Area= 1.960 ac Storage= 12.890 af


Plug-Flow detention time= 407.2 min calculated for 39.213 af (100% of inflow)
 Center-of-Mass det. time= 405.1 min (1,591.1 - 1,186.1)

Volume	Invert	Avail.Storage	Storage Description		
#1	3,385.00'	12.890 af	Custom Stage Data (Irregular) Listed below (Recalc)		
Elevation (feet)	Surf.Area (acres)	Perim. (feet)	Inc.Store (acre-feet)	Cum.Store (acre-feet)	Wet.Area (acres)
3,385.00	0.450	906.0	0.000	0.000	0.450
3,386.00	1.160	1,554.0	0.777	0.777	3.362
3,387.00	1.340	1,542.0	1.249	2.026	3.439
3,388.00	1.440	1,585.0	1.390	3.416	3.687
3,389.00	1.530	1,614.0	1.485	4.901	3.861
3,390.00	1.620	1,644.0	1.575	6.476	4.043
3,391.00	1.720	1,671.0	1.670	8.145	4.211
3,392.00	1.810	1,701.0	1.765	9.910	4.400
3,392.50	1.860	1,718.0	0.917	10.828	4.508
3,393.58	1.960	1,752.0	2.063	12.890	4.727

Device	Routing	Invert	Outlet Devices								
#1	Secondary	3,391.00'	71.0' long x 1.0' breadth Broad-Crested Rectangular Weir Head (feet) 0.20 0.40 0.60 0.80 1.00 1.20 1.40 1.60 1.80 2.00 2.50 3.00 Coef. (English) 2.69 2.72 2.75 2.85 2.98 3.08 3.20 3.28 3.31 3.30 3.31 3.32								
#2	Primary	3,385.00'	9.0" W x 12.0" H Vert. Orifice/Grate C= 0.600								

Primary OutFlow Max=8.86 cfs @ 13.12 hrs HW=3,391.53' (Free Discharge)
 ↑ 2=Orifice/Grate (Orifice Controls 8.86 cfs @ 11.82 fps)

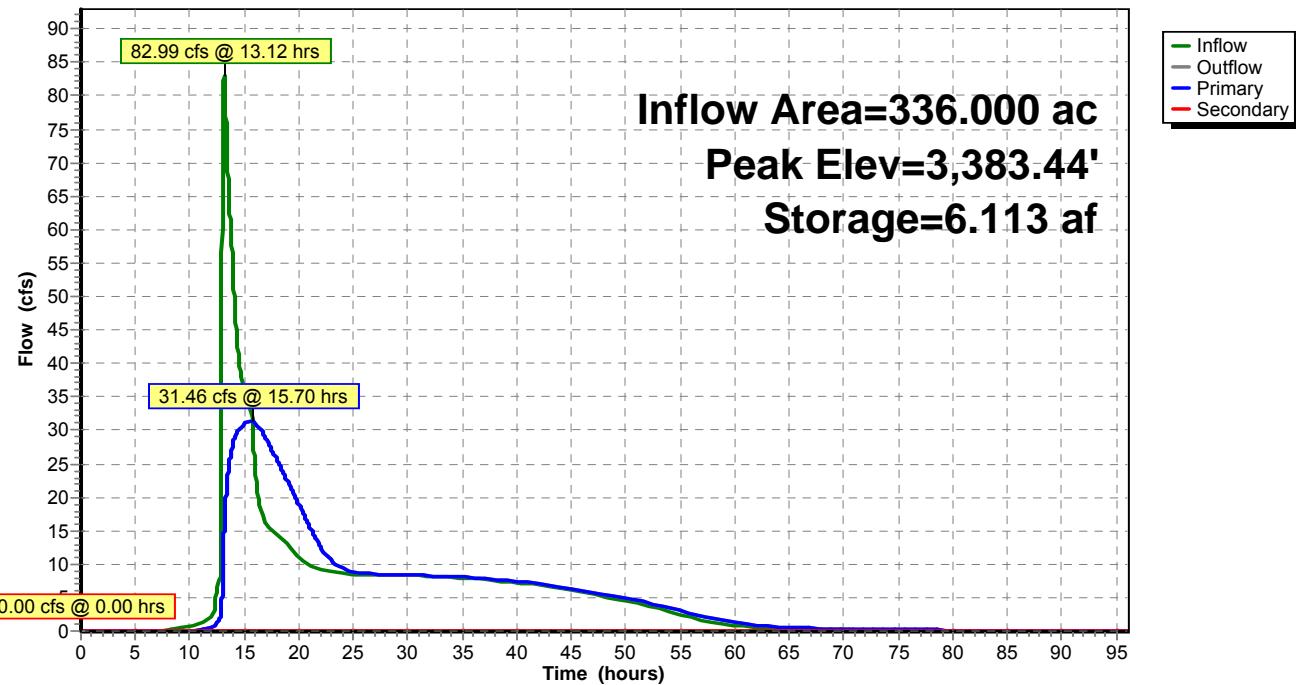
Secondary OutFlow Max=74.07 cfs @ 13.12 hrs HW=3,391.53' (Free Discharge)
 ↑ 1=Broad-Crested Rectangular Weir (Weir Controls 74.07 cfs @ 1.99 fps)

Pond Pond B: Pond B**Hydrograph**

Summary for Pond Pond C: Pond C

Inflow Area = 336.000 ac, 52.98% Impervious, Inflow Depth > 1.40" for 25-Year event
 Inflow = 82.99 cfs @ 13.12 hrs, Volume= 39.213 af
 Outflow = 31.46 cfs @ 15.70 hrs, Volume= 39.138 af, Atten= 62%, Lag= 154.6 min
 Primary = 31.46 cfs @ 15.70 hrs, Volume= 39.138 af
 Secondary = 0.00 cfs @ 0.00 hrs, Volume= 0.000 af

Routing by Stor-Ind method, Time Span= 0.00-96.00 hrs, dt= 0.01 hrs
 Peak Elev= 3,383.44' @ 15.70 hrs Surf.Area= 1.444 ac Storage= 6.113 af
 Flood Elev= 3,386.61' Surf.Area= 1.770 ac Storage= 11.199 af


Plug-Flow detention time= 120.2 min calculated for 39.138 af (100% of inflow)
 Center-of-Mass det. time= 113.5 min (1,704.6 - 1,591.1)

Volume	Invert	Avail.Storage	Storage Description		
#1	3,378.12'	11.199 af	Custom Stage Data (Irregular) Listed below (Recalc)		
Elevation (feet)	Surf.Area (acres)	Perim. (feet)	Inc.Store (acre-feet)	Cum.Store (acre-feet)	Wet.Area (acres)
3,378.12	0.880	1,462.0	0.000	0.000	0.880
3,379.00	0.880	1,462.0	0.774	0.774	0.910
3,380.00	1.080	1,574.0	0.978	1.753	1.532
3,381.00	1.190	1,649.0	1.135	2.887	1.975
3,382.00	1.300	1,687.0	1.245	4.132	2.210
3,383.00	1.400	1,720.0	1.350	5.482	2.419
3,384.00	1.500	1,752.0	1.450	6.931	2.626
3,385.00	1.600	1,765.0	1.550	8.481	2.718
3,385.50	1.660	1,780.0	0.815	9.296	2.818
3,386.61	1.770	1,815.0	1.903	11.199	3.052

Device	Routing	Invert	Outlet Devices								
#1	Secondary	3,384.20'	72.3' long x 0.7' breadth Broad-Crested Rectangular Weir								
			Head (feet) 0.20 0.40 0.60 0.80 1.00 1.20 1.40 1.60 1.80 2.00								
			2.50								
			Coef. (English) 2.76 2.82 2.93 3.09 3.18 3.22 3.27 3.30 3.32								
			3.31 3.32								
#2	Primary	3,378.12'	24.0" Round Culvert								
			L= 464.0' RCP, square edge headwall, Ke= 0.500								
			Inlet / Outlet Invert= 3,378.12' / 3,362.61' S= 0.0334 '/' Cc= 0.900								
			n= 0.012 Concrete pipe, finished, Flow Area= 3.14 sf								

Primary OutFlow Max=31.46 cfs @ 15.70 hrs HW=3,383.44' (Free Discharge)
 ↑ 2=Culvert (Inlet Controls 31.46 cfs @ 10.01 fps)

Secondary OutFlow Max=0.00 cfs @ 0.00 hrs HW=3,378.12' (Free Discharge)
 ↑ 1=Broad-Crested Rectangular Weir (Controls 0.00 cfs)

Pond Pond C: Pond C**Hydrograph**

Summary for Pond Pond D: Pond D

Inflow Area = 23.000 ac, 4.35% Impervious, Inflow Depth = 0.59" for 25-Year event
 Inflow = 12.28 cfs @ 12.17 hrs, Volume= 1.139 af
 Outflow = 2.88 cfs @ 12.75 hrs, Volume= 1.139 af, Atten= 77%, Lag= 35.0 min
 Primary = 2.88 cfs @ 12.75 hrs, Volume= 1.139 af
 Secondary = 0.00 cfs @ 0.00 hrs, Volume= 0.000 af

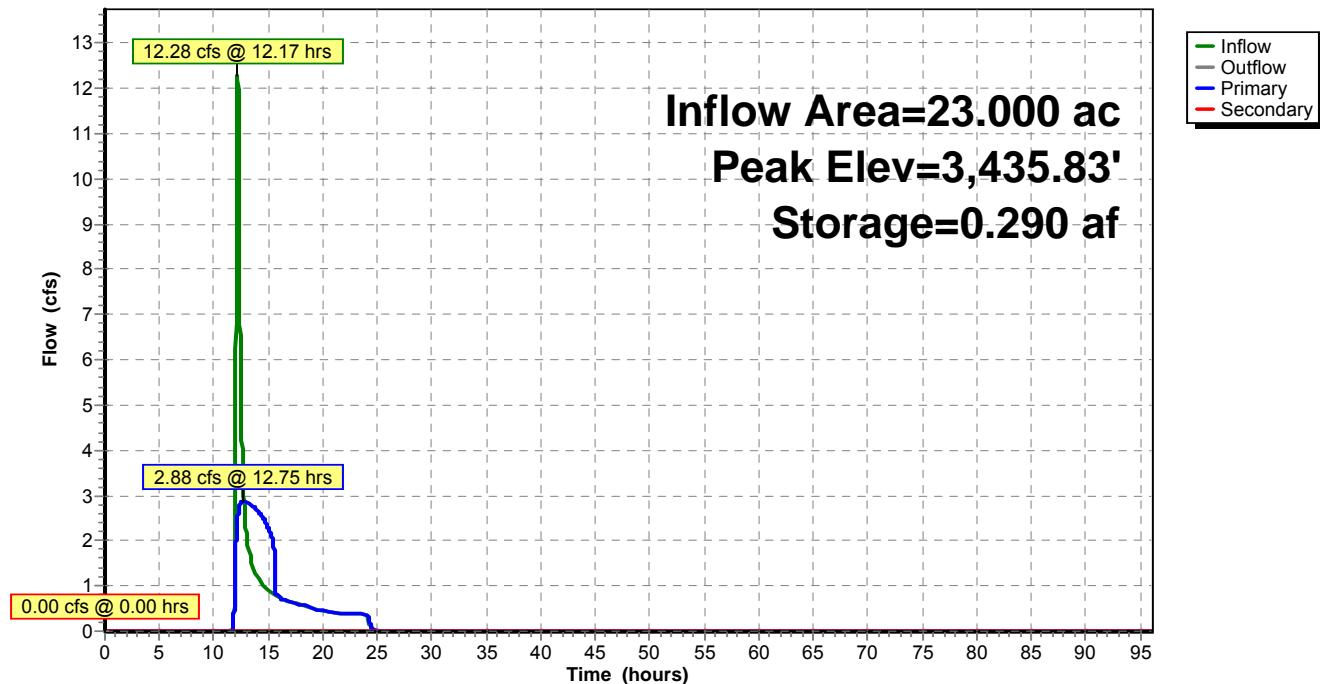
Routing by Stor-Ind method, Time Span= 0.00-96.00 hrs, dt= 0.01 hrs
 Peak Elev= 3,435.83' @ 12.75 hrs Surf.Area= 0.292 ac Storage= 0.290 af
 Flood Elev= 3,443.00' Surf.Area= 0.850 ac Storage= 3.671 af

Plug-Flow detention time= 31.2 min calculated for 1.139 af (100% of inflow)
 Center-of-Mass det. time= 31.2 min (928.3 - 897.1)

Volume	Invert	Avail.Storage	Storage Description		
#1	3,433.00'	3.671 af	Custom Stage Data (Irregular)	Listed below (Recalc)	
Elevation (feet)	Surf.Area (acres)	Perim. (feet)	Inc.Store (acre-feet)	Cum.Store (acre-feet)	Wet.Area (acres)
3,433.00	0.000	0.0	0.000	0.000	0.000
3,433.50	0.001	44.0	0.000	0.000	0.004
3,434.00	0.020	127.0	0.004	0.004	0.029
3,434.50	0.090	260.0	0.025	0.030	0.124
3,435.00	0.170	370.0	0.064	0.094	0.250
3,435.50	0.260	434.0	0.107	0.200	0.344
3,436.00	0.310	481.0	0.142	0.343	0.423
3,436.50	0.340	529.0	0.162	0.505	0.512
3,437.00	0.360	540.0	0.175	0.680	0.534
3,437.50	0.380	556.0	0.185	0.865	0.567
3,438.00	0.400	585.0	0.195	1.060	0.628
3,438.50	0.420	590.0	0.205	1.265	0.640
3,439.00	0.440	598.0	0.215	1.480	0.659
3,439.50	0.460	613.0	0.225	1.705	0.693
3,440.00	0.480	639.0	0.235	1.940	0.753
3,440.50	0.510	666.0	0.247	2.188	0.818
3,441.00	0.530	694.0	0.260	2.448	0.888
3,441.50	0.550	721.0	0.270	2.718	0.958
3,442.00	0.580	755.0	0.282	3.000	1.050
3,442.50	0.630	806.0	0.302	3.302	1.196
3,443.00	0.850	826.0	0.369	3.671	1.256

Device	Routing	Invert	Outlet Devices	
#1	Primary	3,433.00'	10.0" Round Culvert	
			L= 128.0' RCP, sq.cut end projecting, Ke= 0.500 Inlet / Outlet Invert= 3,433.00' / 3,432.13' S= 0.0068 '/' Cc= 0.900 n= 0.013 Cast iron, coated, Flow Area= 0.55 sf	
#2	Secondary	3,438.31'	60.0" Horiz. Orifice/Grate C= 0.600 Limited to weir flow at low heads	

Primary OutFlow Max=2.88 cfs @ 12.75 hrs HW=3,435.83' (Free Discharge)


1=Culvert (Barrel Controls 2.88 cfs @ 5.27 fps)

Secondary OutFlow Max=0.00 cfs @ 0.00 hrs HW=3,433.00' (Free Discharge)

2=Orifice/Grate (Controls 0.00 cfs)

Pond Pond D: Pond D

Hydrograph

Summary for Pond Pond E: Pond E

[81] Warning: Exceeded Pond 404 by 0.49' @ 13.80 hrs

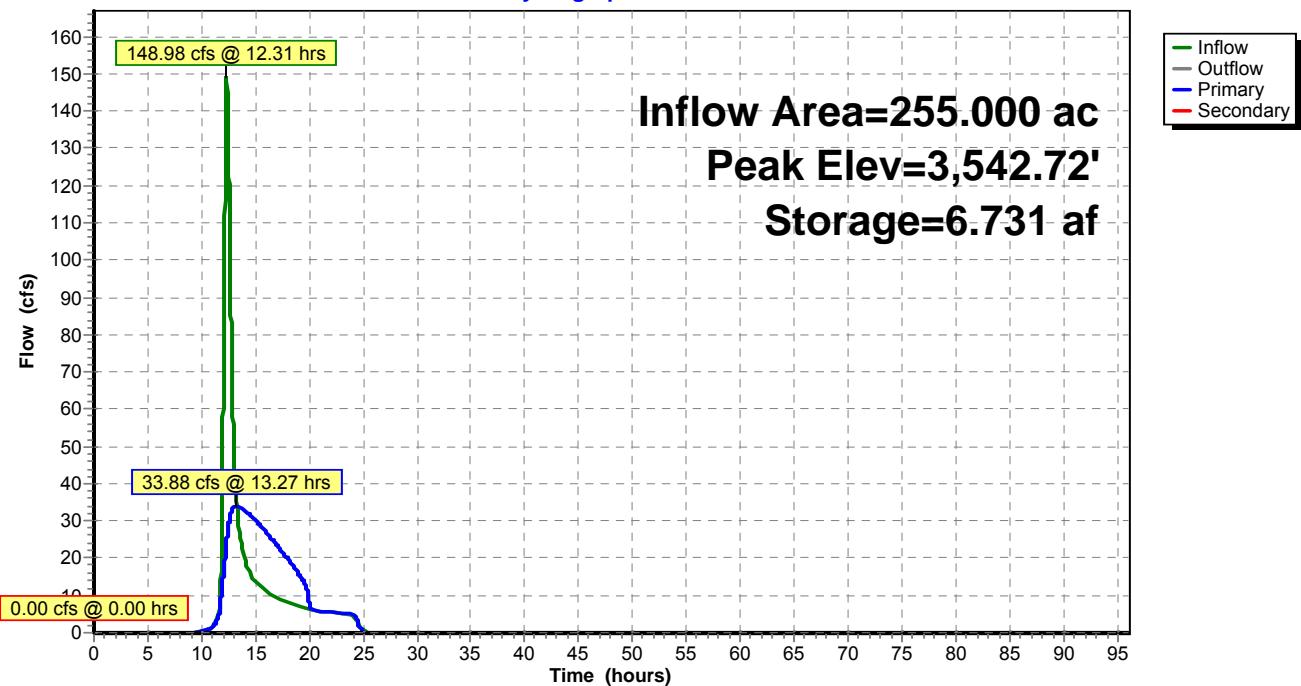
Inflow Area = 255.000 ac, 25.49% Impervious, Inflow Depth = 0.90" for 25-Year event
 Inflow = 148.98 cfs @ 12.31 hrs, Volume= 19.046 af
 Outflow = 33.88 cfs @ 13.27 hrs, Volume= 19.046 af, Atten= 77%, Lag= 57.5 min
 Primary = 33.88 cfs @ 13.27 hrs, Volume= 19.046 af
 Secondary = 0.00 cfs @ 0.00 hrs, Volume= 0.000 af

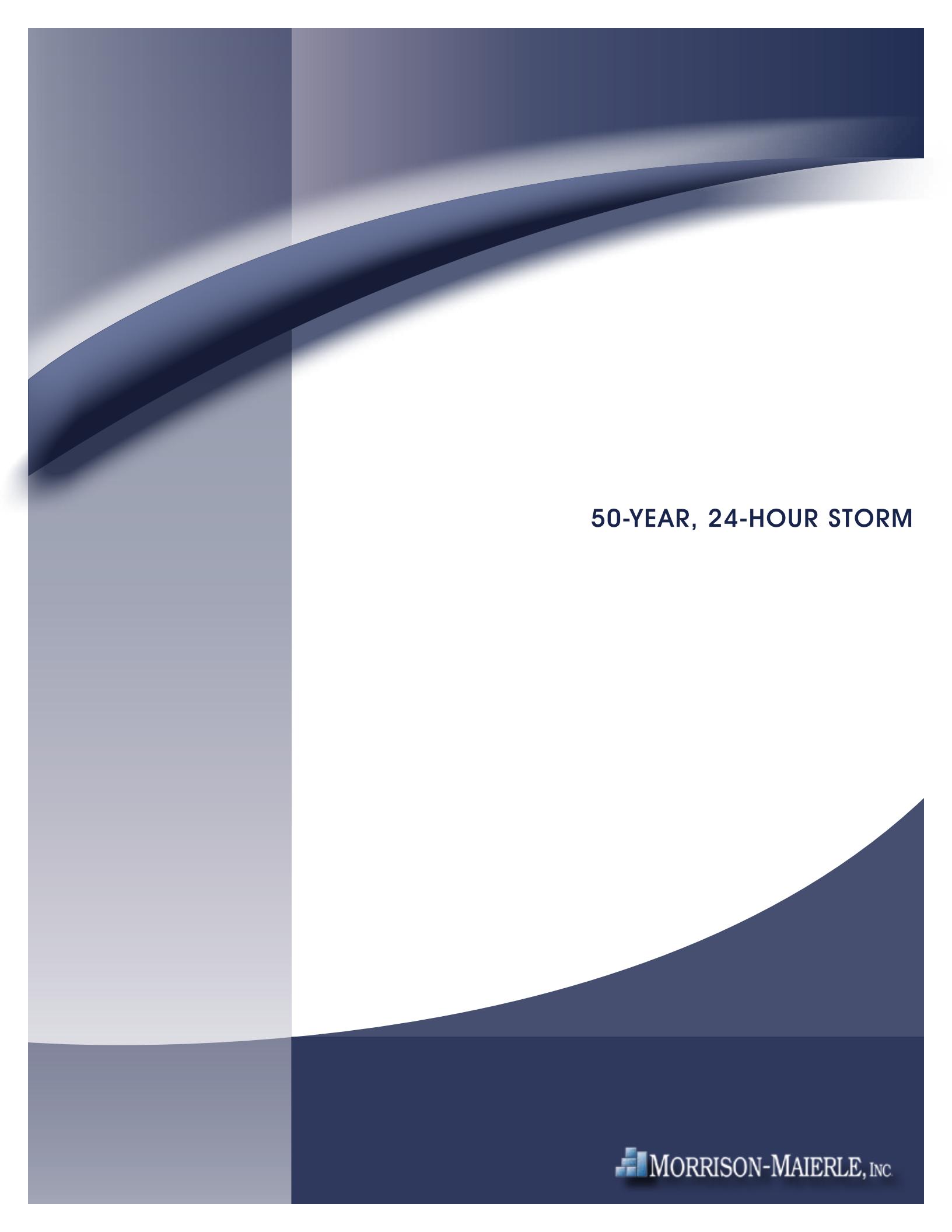
Routing by Stor-Ind method, Time Span= 0.00-96.00 hrs, dt= 0.01 hrs
 Peak Elev= 3,542.72' @ 13.27 hrs Surf.Area= 1.743 ac Storage= 6.731 af
 Flood Elev= 3,545.65' Surf.Area= 1.951 ac Storage= 12.146 af

Plug-Flow detention time= 83.9 min calculated for 19.046 af (100% of inflow)
 Center-of-Mass det. time= 83.9 min (965.3 - 881.4)

Volume	Invert	Avail.Storage	Storage Description		
#1	3,536.70'	15.883 af	Custom Stage Data (Irregular)	Listed below (Recalc)	
Elevation (feet)	Surf.Area (acres)	Perim. (feet)	Inc.Store (acre-feet)	Cum.Store (acre-feet)	Wet.Area (acres)
3,536.70	0.000	0.0	0.000	0.000	0.000
3,537.50	0.020	12.0	0.005	0.005	0.000
3,538.00	0.060	271.0	0.019	0.024	0.134
3,538.50	0.900	814.0	0.199	0.223	1.211
3,539.00	1.350	996.0	0.559	0.782	1.812
3,539.50	1.490	1,032.0	0.710	1.492	1.946
3,540.00	1.560	1,070.0	0.762	2.254	2.093
3,540.50	1.590	1,083.0	0.787	3.042	2.145
3,541.00	1.620	1,098.0	0.802	3.844	2.206
3,541.50	1.660	1,111.0	0.820	4.664	2.260
3,542.00	1.690	1,122.0	0.837	5.501	2.307
3,542.50	1.730	1,134.0	0.855	6.356	2.358
3,543.00	1.760	1,146.0	0.872	7.229	2.410
3,543.50	1.800	1,158.0	0.890	8.119	2.462
3,544.00	1.830	1,169.0	0.907	9.026	2.511
3,544.50	1.870	1,180.0	0.925	9.951	2.560
3,545.00	1.900	1,191.0	0.942	10.894	2.609
3,545.50	1.940	1,202.0	0.960	11.854	2.659
3,547.50	2.090	1,244.0	4.029	15.883	2.855

Device	Routing	Invert	Outlet Devices	
#1	Primary	3,536.70'	24.0" Round Culvert	
			L= 177.0' RCP, square edge headwall, Ke= 0.500	
			Inlet / Outlet Invert= 3,536.70' / 3,526.41' S= 0.0581 '/' Cc= 0.900	
			n= 0.012 Concrete pipe, finished, Flow Area= 3.14 sf	
#2	Secondary	3,545.65'	71.0' long x 1.0' breadth Broad-Crested Rectangular Weir	
			Head (feet) 0.20 0.40 0.60 0.80 1.00 1.20 1.40 1.60 1.80 2.00	
			2.50 3.00	
			Coef. (English) 2.69 2.72 2.75 2.85 2.98 3.08 3.20 3.28 3.31	


3.30 3.31 3.32


Primary OutFlow Max=33.88 cfs @ 13.27 hrs HW=3,542.72' (Free Discharge)
 ↑
 1=Culvert (Inlet Controls 33.88 cfs @ 10.78 fps)

Secondary OutFlow Max=0.00 cfs @ 0.00 hrs HW=3,536.70' (Free Discharge)
 ↑
 2=Broad-Crested Rectangular Weir (Controls 0.00 cfs)

Pond Pond E: Pond E

Hydrograph

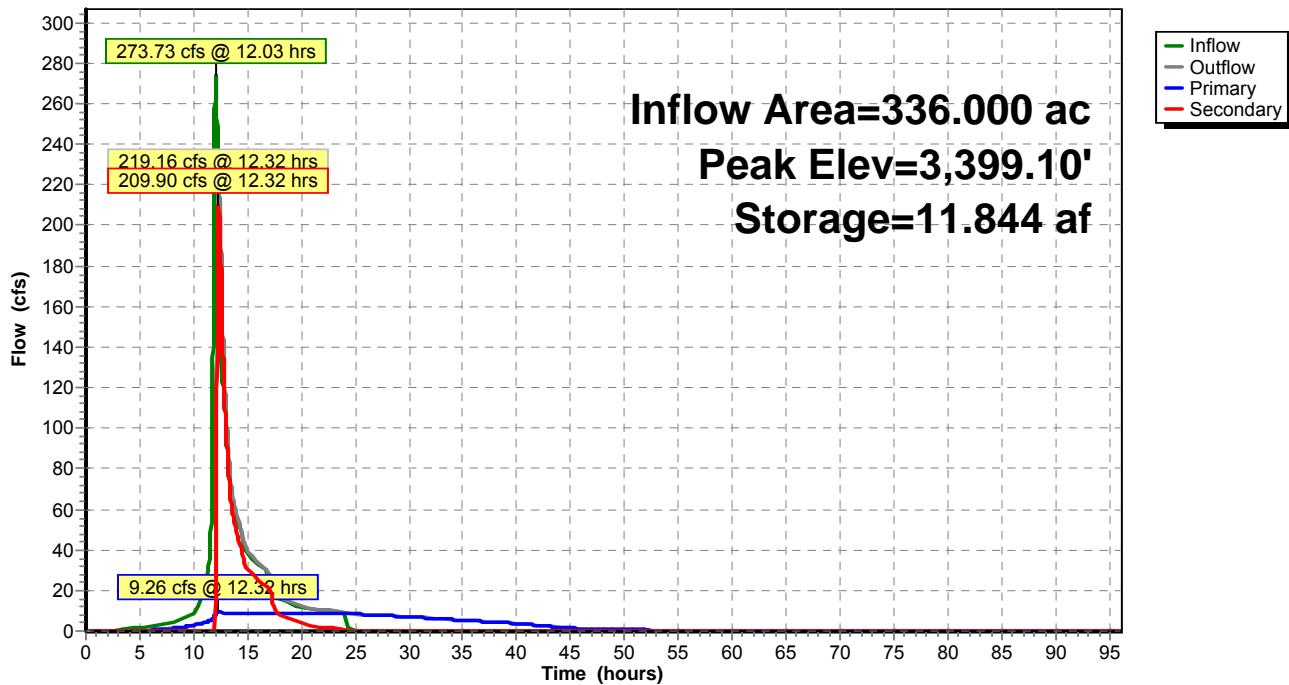
50-YEAR, 24-HOUR STORM

Summary for Pond Pond A: Pond A

[79] Warning: Submerged Pond 107 Primary device # 1 OUTLET by 1.92'

Inflow Area = 336.000 ac, 52.98% Impervious, Inflow Depth = 1.67" for 50-Year event
 Inflow = 273.73 cfs @ 12.03 hrs, Volume= 46.808 af
 Outflow = 219.16 cfs @ 12.32 hrs, Volume= 46.776 af, Atten= 20%, Lag= 17.4 min
 Primary = 9.26 cfs @ 12.32 hrs, Volume= 19.904 af
 Secondary = 209.90 cfs @ 12.32 hrs, Volume= 26.872 af

Routing by Stor-Ind method, Time Span= 0.00-96.00 hrs, dt= 0.01 hrs
 Peak Elev= 3,399.10' @ 12.32 hrs Surf.Area= 2.038 ac Storage= 11.844 af
 Flood Elev= 3,400.49' Surf.Area= 2.160 ac Storage= 14.769 af


Plug-Flow detention time= 298.9 min calculated for 46.771 af (100% of inflow)
 Center-of-Mass det. time= 298.9 min (1,139.0 - 840.1)

Volume	Invert	Avail.Storage	Storage Description		
#1	3,392.02'	14.769 af	Custom Stage Data (Irregular)	Listed below (Recalc)	
Elevation (feet)	Surf.Area (acres)	Perim. (feet)	Inc.Store (acre-feet)	Cum.Store (acre-feet)	Wet.Area (acres)
3,392.02	1.210	1,096.0	0.000	0.000	1.210
3,393.00	1.210	1,096.0	1.186	1.186	1.235
3,394.00	1.590	1,124.0	1.396	2.581	1.351
3,395.00	1.690	1,158.0	1.640	4.221	1.495
3,396.00	1.770	1,190.0	1.730	5.951	1.635
3,397.00	1.860	1,223.0	1.815	7.766	1.783
3,398.00	1.940	1,252.0	1.900	9.666	1.917
3,399.00	2.030	1,280.0	1.985	11.651	2.050
3,399.50	2.070	1,295.0	1.025	12.676	2.122
3,400.49	2.160	1,322.0	2.094	14.769	2.255

Device	Routing	Invert	Outlet Devices								
#1	Secondary	3,398.10'	71.0' long x 1.0' breadth Broad-Crested Rectangular Weir								
			Head (feet)	0.20	0.40	0.60	0.80	1.00	1.20	1.40	1.60
			2.50	3.00							
			Coef. (English)	2.69	2.72	2.75	2.85	2.98	3.08	3.20	3.28
			3.30	3.31	3.32						
#2	Primary	3,392.02'	9.0" W x 12.0" H Vert. Orifice/Grate	C= 0.600							

Primary OutFlow Max=9.26 cfs @ 12.32 hrs HW=3,399.10' (Free Discharge)
 ↑ 2=Orifice/Grate (Orifice Controls 9.26 cfs @ 12.34 fps)

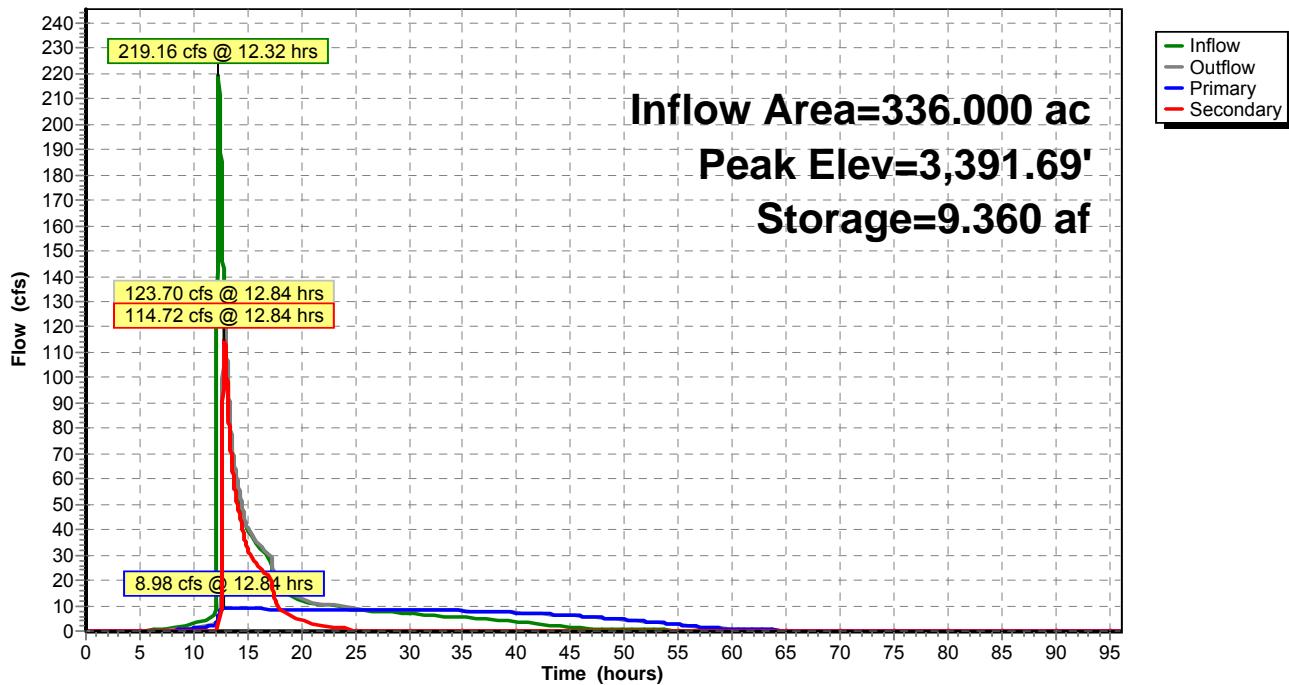
Secondary OutFlow Max=209.82 cfs @ 12.32 hrs HW=3,399.10' (Free Discharge)
 ↑ 1=Broad-Crested Rectangular Weir (Weir Controls 209.82 cfs @ 2.97 fps)

Pond Pond A: Pond A**Hydrograph**

Summary for Pond Pond B: Pond B

Inflow Area = 336.000 ac, 52.98% Impervious, Inflow Depth = 1.67" for 50-Year event
 Inflow = 219.16 cfs @ 12.32 hrs, Volume= 46.776 af
 Outflow = 123.70 cfs @ 12.84 hrs, Volume= 46.756 af, Atten= 44%, Lag= 30.9 min
 Primary = 8.98 cfs @ 12.84 hrs, Volume= 27.002 af
 Secondary = 114.72 cfs @ 12.84 hrs, Volume= 19.754 af

Routing by Stor-Ind method, Time Span= 0.00-96.00 hrs, dt= 0.01 hrs
 Peak Elev= 3,391.69' @ 12.84 hrs Surf.Area= 1.782 ac Storage= 9.360 af
 Flood Elev= 3,393.58' Surf.Area= 1.960 ac Storage= 12.890 af


Plug-Flow detention time= 345.9 min calculated for 46.751 af (100% of inflow)
 Center-of-Mass det. time= 344.1 min (1,483.1 - 1,139.0)

Volume	Invert	Avail.Storage	Storage Description		
#1	3,385.00'	12.890 af	Custom Stage Data (Irregular) Listed below (Recalc)		
Elevation (feet)	Surf.Area (acres)	Perim. (feet)	Inc.Store (acre-feet)	Cum.Store (acre-feet)	Wet.Area (acres)
3,385.00	0.450	906.0	0.000	0.000	0.450
3,386.00	1.160	1,554.0	0.777	0.777	3.362
3,387.00	1.340	1,542.0	1.249	2.026	3.439
3,388.00	1.440	1,585.0	1.390	3.416	3.687
3,389.00	1.530	1,614.0	1.485	4.901	3.861
3,390.00	1.620	1,644.0	1.575	6.476	4.043
3,391.00	1.720	1,671.0	1.670	8.145	4.211
3,392.00	1.810	1,701.0	1.765	9.910	4.400
3,392.50	1.860	1,718.0	0.917	10.828	4.508
3,393.58	1.960	1,752.0	2.063	12.890	4.727

Device	Routing	Invert	Outlet Devices								
#1	Secondary	3,391.00'	71.0' long x 1.0' breadth Broad-Crested Rectangular Weir Head (feet) 0.20 0.40 0.60 0.80 1.00 1.20 1.40 1.60 1.80 2.00 2.50 3.00 Coef. (English) 2.69 2.72 2.75 2.85 2.98 3.08 3.20 3.28 3.31 3.30 3.31 3.32								
#2	Primary	3,385.00'	9.0" W x 12.0" H Vert. Orifice/Grate C= 0.600								

Primary OutFlow Max=8.98 cfs @ 12.84 hrs HW=3,391.69' (Free Discharge)
 ↑ 2=Orifice/Grate (Orifice Controls 8.98 cfs @ 11.98 fps)

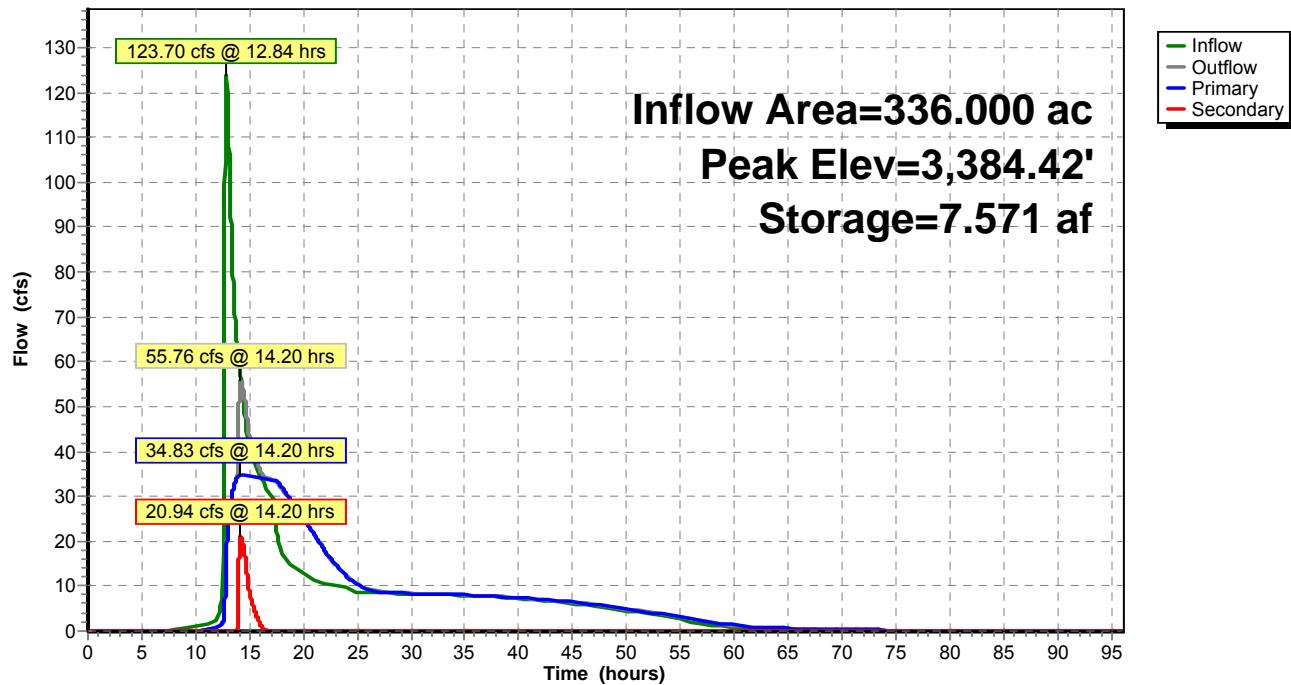
Secondary OutFlow Max=114.69 cfs @ 12.84 hrs HW=3,391.69' (Free Discharge)
 ↑ 1=Broad-Crested Rectangular Weir (Weir Controls 114.69 cfs @ 2.33 fps)

Pond Pond B: Pond B**Hydrograph**

Summary for Pond Pond C: Pond C

Inflow Area = 336.000 ac, 52.98% Impervious, Inflow Depth > 1.67" for 50-Year event
 Inflow = 123.70 cfs @ 12.84 hrs, Volume= 46.756 af
 Outflow = 55.76 cfs @ 14.20 hrs, Volume= 46.681 af, Atten= 55%, Lag= 82.0 min
 Primary = 34.83 cfs @ 14.20 hrs, Volume= 44.834 af
 Secondary = 20.94 cfs @ 14.20 hrs, Volume= 1.847 af

Routing by Stor-Ind method, Time Span= 0.00-96.00 hrs, dt= 0.01 hrs
 Peak Elev= 3,384.42' @ 14.20 hrs Surf.Area= 1.542 ac Storage= 7.571 af
 Flood Elev= 3,386.61' Surf.Area= 1.770 ac Storage= 11.199 af


Plug-Flow detention time= 123.5 min calculated for 46.676 af (100% of inflow)
 Center-of-Mass det. time= 117.8 min (1,600.8 - 1,483.1)

Volume	Invert	Avail.Storage	Storage Description		
#1	3,378.12'	11.199 af	Custom Stage Data (Irregular) Listed below (Recalc)		
Elevation (feet)	Surf.Area (acres)	Perim. (feet)	Inc.Store (acre-feet)	Cum.Store (acre-feet)	Wet.Area (acres)
3,378.12	0.880	1,462.0	0.000	0.000	0.880
3,379.00	0.880	1,462.0	0.774	0.774	0.910
3,380.00	1.080	1,574.0	0.978	1.753	1.532
3,381.00	1.190	1,649.0	1.135	2.887	1.975
3,382.00	1.300	1,687.0	1.245	4.132	2.210
3,383.00	1.400	1,720.0	1.350	5.482	2.419
3,384.00	1.500	1,752.0	1.450	6.931	2.626
3,385.00	1.600	1,765.0	1.550	8.481	2.718
3,385.50	1.660	1,780.0	0.815	9.296	2.818
3,386.61	1.770	1,815.0	1.903	11.199	3.052

Device	Routing	Invert	Outlet Devices								
#1	Secondary	3,384.20'	72.3' long x 0.7' breadth Broad-Crested Rectangular Weir								
			Head (feet) 0.20 0.40 0.60 0.80 1.00 1.20 1.40 1.60 1.80 2.00								
			2.50								
			Coef. (English) 2.76 2.82 2.93 3.09 3.18 3.22 3.27 3.30 3.32								
			3.31 3.32								
#2	Primary	3,378.12'	24.0" Round Culvert								
			L= 464.0' RCP, square edge headwall, Ke= 0.500								
			Inlet / Outlet Invert= 3,378.12' / 3,362.61' S= 0.0334 '/' Cc= 0.900								
			n= 0.012 Concrete pipe, finished, Flow Area= 3.14 sf								

Primary OutFlow Max=34.83 cfs @ 14.20 hrs HW=3,384.42' (Free Discharge)
 ↑ 2=Culvert (Inlet Controls 34.83 cfs @ 11.09 fps)

Secondary OutFlow Max=20.73 cfs @ 14.20 hrs HW=3,384.42' (Free Discharge)
 ↑ 1=Broad-Crested Rectangular Weir (Weir Controls 20.73 cfs @ 1.30 fps)

Pond Pond C: Pond C**Hydrograph**

Summary for Pond Pond D: Pond D

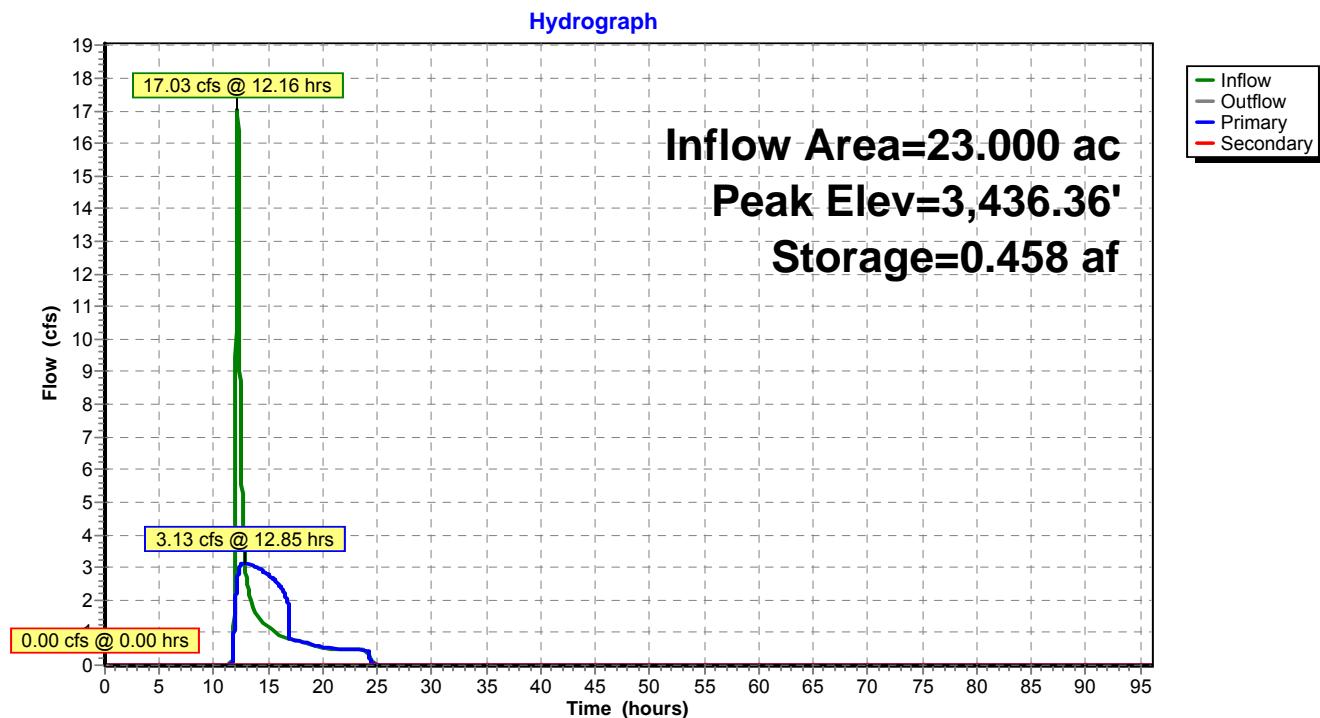
Inflow Area = 23.000 ac, 4.35% Impervious, Inflow Depth = 0.78" for 50-Year event
 Inflow = 17.03 cfs @ 12.16 hrs, Volume= 1.491 af
 Outflow = 3.13 cfs @ 12.85 hrs, Volume= 1.491 af, Atten= 82%, Lag= 41.4 min
 Primary = 3.13 cfs @ 12.85 hrs, Volume= 1.491 af
 Secondary = 0.00 cfs @ 0.00 hrs, Volume= 0.000 af

Routing by Stor-Ind method, Time Span= 0.00-96.00 hrs, dt= 0.01 hrs
 Peak Elev= 3,436.36' @ 12.85 hrs Surf.Area= 0.331 ac Storage= 0.458 af
 Flood Elev= 3,443.00' Surf.Area= 0.850 ac Storage= 3.671 af

Plug-Flow detention time= 51.1 min calculated for 1.490 af (100% of inflow)
 Center-of-Mass det. time= 51.1 min (938.6 - 887.5)

Volume	Invert	Avail.Storage	Storage Description		
#1	3,433.00'	3.671 af	Custom Stage Data (Irregular)	Listed below (Recalc)	
Elevation (feet)	Surf.Area (acres)	Perim. (feet)	Inc.Store (acre-feet)	Cum.Store (acre-feet)	Wet.Area (acres)
3,433.00	0.000	0.0	0.000	0.000	0.000
3,433.50	0.001	44.0	0.000	0.000	0.004
3,434.00	0.020	127.0	0.004	0.004	0.029
3,434.50	0.090	260.0	0.025	0.030	0.124
3,435.00	0.170	370.0	0.064	0.094	0.250
3,435.50	0.260	434.0	0.107	0.200	0.344
3,436.00	0.310	481.0	0.142	0.343	0.423
3,436.50	0.340	529.0	0.162	0.505	0.512
3,437.00	0.360	540.0	0.175	0.680	0.534
3,437.50	0.380	556.0	0.185	0.865	0.567
3,438.00	0.400	585.0	0.195	1.060	0.628
3,438.50	0.420	590.0	0.205	1.265	0.640
3,439.00	0.440	598.0	0.215	1.480	0.659
3,439.50	0.460	613.0	0.225	1.705	0.693
3,440.00	0.480	639.0	0.235	1.940	0.753
3,440.50	0.510	666.0	0.247	2.188	0.818
3,441.00	0.530	694.0	0.260	2.448	0.888
3,441.50	0.550	721.0	0.270	2.718	0.958
3,442.00	0.580	755.0	0.282	3.000	1.050
3,442.50	0.630	806.0	0.302	3.302	1.196
3,443.00	0.850	826.0	0.369	3.671	1.256

Device	Routing	Invert	Outlet Devices	
#1	Primary	3,433.00'	10.0" Round Culvert	
			L= 128.0' RCP, sq.cut end projecting, Ke= 0.500 Inlet / Outlet Invert= 3,433.00' / 3,432.13' S= 0.0068 '/' Cc= 0.900 n= 0.013 Cast iron, coated, Flow Area= 0.55 sf	
#2	Secondary	3,438.31'	60.0" Horiz. Orifice/Grate C= 0.600 Limited to weir flow at low heads	


Primary OutFlow Max=3.13 cfs @ 12.85 hrs HW=3,436.36' (Free Discharge)

1=Culvert (Barrel Controls 3.13 cfs @ 5.75 fps)

Secondary OutFlow Max=0.00 cfs @ 0.00 hrs HW=3,433.00' (Free Discharge)

2=Orifice/Grate (Controls 0.00 cfs)

Pond Pond D: Pond D

Summary for Pond Pond E: Pond E

[81] Warning: Exceeded Pond 404 by 1.71' @ 13.88 hrs

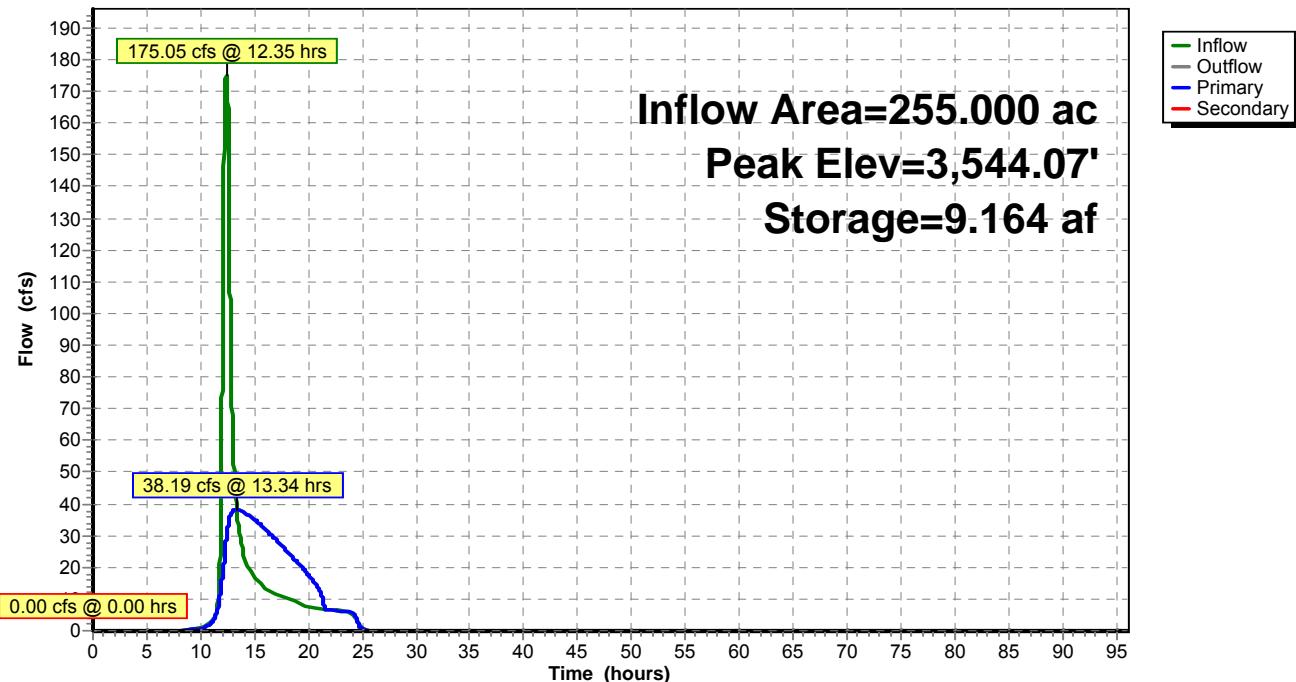
Inflow Area = 255.000 ac, 25.49% Impervious, Inflow Depth = 1.12" for 50-Year event
 Inflow = 175.05 cfs @ 12.35 hrs, Volume= 23.789 af
 Outflow = 38.19 cfs @ 13.34 hrs, Volume= 23.789 af, Atten= 78%, Lag= 59.4 min
 Primary = 38.19 cfs @ 13.34 hrs, Volume= 23.789 af
 Secondary = 0.00 cfs @ 0.00 hrs, Volume= 0.000 af

Routing by Stor-Ind method, Time Span= 0.00-96.00 hrs, dt= 0.01 hrs
 Peak Elev= 3,544.07' @ 13.34 hrs Surf.Area= 1.836 ac Storage= 9.164 af
 Flood Elev= 3,545.65' Surf.Area= 1.951 ac Storage= 12.146 af

Plug-Flow detention time= 106.2 min calculated for 23.787 af (100% of inflow)
 Center-of-Mass det. time= 106.1 min (981.2 - 875.1)

Volume	Invert	Avail.Storage	Storage Description		
#1	3,536.70'	15.883 af	Custom Stage Data (Irregular)	Listed below (Recalc)	
Elevation (feet)	Surf.Area (acres)	Perim. (feet)	Inc.Store (acre-feet)	Cum.Store (acre-feet)	Wet.Area (acres)
3,536.70	0.000	0.0	0.000	0.000	0.000
3,537.50	0.020	12.0	0.005	0.005	0.000
3,538.00	0.060	271.0	0.019	0.024	0.134
3,538.50	0.900	814.0	0.199	0.223	1.211
3,539.00	1.350	996.0	0.559	0.782	1.812
3,539.50	1.490	1,032.0	0.710	1.492	1.946
3,540.00	1.560	1,070.0	0.762	2.254	2.093
3,540.50	1.590	1,083.0	0.787	3.042	2.145
3,541.00	1.620	1,098.0	0.802	3.844	2.206
3,541.50	1.660	1,111.0	0.820	4.664	2.260
3,542.00	1.690	1,122.0	0.837	5.501	2.307
3,542.50	1.730	1,134.0	0.855	6.356	2.358
3,543.00	1.760	1,146.0	0.872	7.229	2.410
3,543.50	1.800	1,158.0	0.890	8.119	2.462
3,544.00	1.830	1,169.0	0.907	9.026	2.511
3,544.50	1.870	1,180.0	0.925	9.951	2.560
3,545.00	1.900	1,191.0	0.942	10.894	2.609
3,545.50	1.940	1,202.0	0.960	11.854	2.659
3,547.50	2.090	1,244.0	4.029	15.883	2.855

Device	Routing	Invert	Outlet Devices	
#1	Primary	3,536.70'	24.0" Round Culvert	
			L= 177.0' RCP, square edge headwall, Ke= 0.500 Inlet / Outlet Invert= 3,536.70' / 3,526.41' S= 0.0581 '/' Cc= 0.900 n= 0.012 Concrete pipe, finished, Flow Area= 3.14 sf	
#2	Secondary	3,545.65'	71.0' long x 1.0' breadth Broad-Crested Rectangular Weir Head (feet) 0.20 0.40 0.60 0.80 1.00 1.20 1.40 1.60 1.80 2.00 2.50 3.00 Coef. (English) 2.69 2.72 2.75 2.85 2.98 3.08 3.20 3.28 3.31	


3.30 3.31 3.32

Primary OutFlow Max=38.19 cfs @ 13.34 hrs HW=3,544.07' (Free Discharge)
 ↑
 1=Culvert (Inlet Controls 38.19 cfs @ 12.16 fps)

Secondary OutFlow Max=0.00 cfs @ 0.00 hrs HW=3,536.70' (Free Discharge)
 ↑
 2=Broad-Crested Rectangular Weir (Controls 0.00 cfs)

Pond Pond E: Pond E

Hydrograph

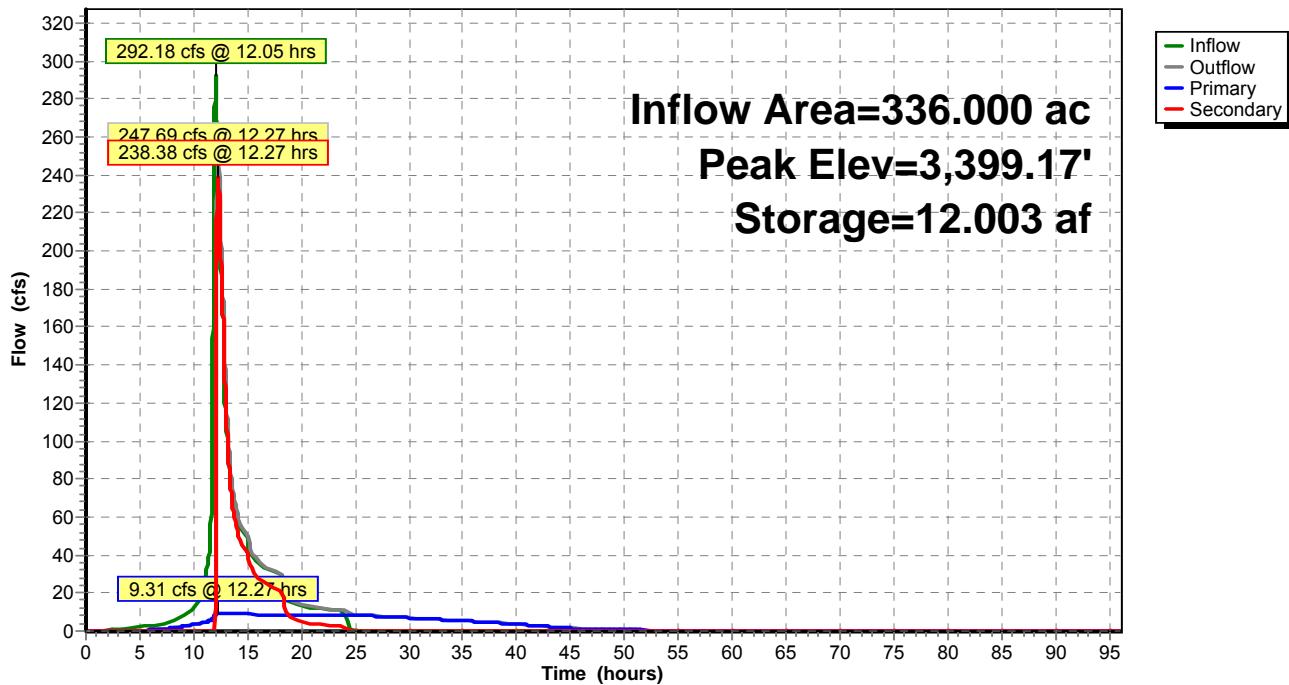
100-YEAR, 24-HOUR STORM

Summary for Pond Pond A: Pond A

[79] Warning: Submerged Pond 107 Primary device # 1 OUTLET by 1.99'

Inflow Area = 336.000 ac, 52.98% Impervious, Inflow Depth = 1.94" for 100-Year event
 Inflow = 292.18 cfs @ 12.05 hrs, Volume= 54.278 af
 Outflow = 247.69 cfs @ 12.27 hrs, Volume= 54.246 af, Atten= 15%, Lag= 13.0 min
 Primary = 9.31 cfs @ 12.27 hrs, Volume= 20.210 af
 Secondary = 238.38 cfs @ 12.27 hrs, Volume= 34.036 af

Routing by Stor-Ind method, Time Span= 0.00-96.00 hrs, dt= 0.01 hrs
 Peak Elev= 3,399.17' @ 12.27 hrs Surf.Area= 2.044 ac Storage= 12.003 af
 Flood Elev= 3,400.49' Surf.Area= 2.160 ac Storage= 14.769 af


Plug-Flow detention time= 262.3 min calculated for 54.246 af (100% of inflow)
 Center-of-Mass det. time= 261.9 min (1,105.5 - 843.6)

Volume	Invert	Avail.Storage	Storage Description		
#1	3,392.02'	14.769 af	Custom Stage Data (Irregular)	Listed below (Recalc)	
Elevation (feet)	Surf.Area (acres)	Perim. (feet)	Inc.Store (acre-feet)	Cum.Store (acre-feet)	Wet.Area (acres)
3,392.02	1.210	1,096.0	0.000	0.000	1.210
3,393.00	1.210	1,096.0	1.186	1.186	1.235
3,394.00	1.590	1,124.0	1.396	2.581	1.351
3,395.00	1.690	1,158.0	1.640	4.221	1.495
3,396.00	1.770	1,190.0	1.730	5.951	1.635
3,397.00	1.860	1,223.0	1.815	7.766	1.783
3,398.00	1.940	1,252.0	1.900	9.666	1.917
3,399.00	2.030	1,280.0	1.985	11.651	2.050
3,399.50	2.070	1,295.0	1.025	12.676	2.122
3,400.49	2.160	1,322.0	2.094	14.769	2.255

Device	Routing	Invert	Outlet Devices								
#1	Secondary	3,398.10'	71.0' long x 1.0' breadth Broad-Crested Rectangular Weir								
			Head (feet) 0.20 0.40 0.60 0.80 1.00 1.20 1.40 1.60 1.80 2.00								
			2.50 3.00								
			Coef. (English) 2.69 2.72 2.75 2.85 2.98 3.08 3.20 3.28 3.31								
			3.30 3.31 3.32								
#2	Primary	3,392.02'	9.0" W x 12.0" H Vert. Orifice/Grate C= 0.600								

Primary OutFlow Max=9.31 cfs @ 12.27 hrs HW=3,399.17' (Free Discharge)
 ↗ 2=Orifice/Grate (Orifice Controls 9.31 cfs @ 12.42 fps)

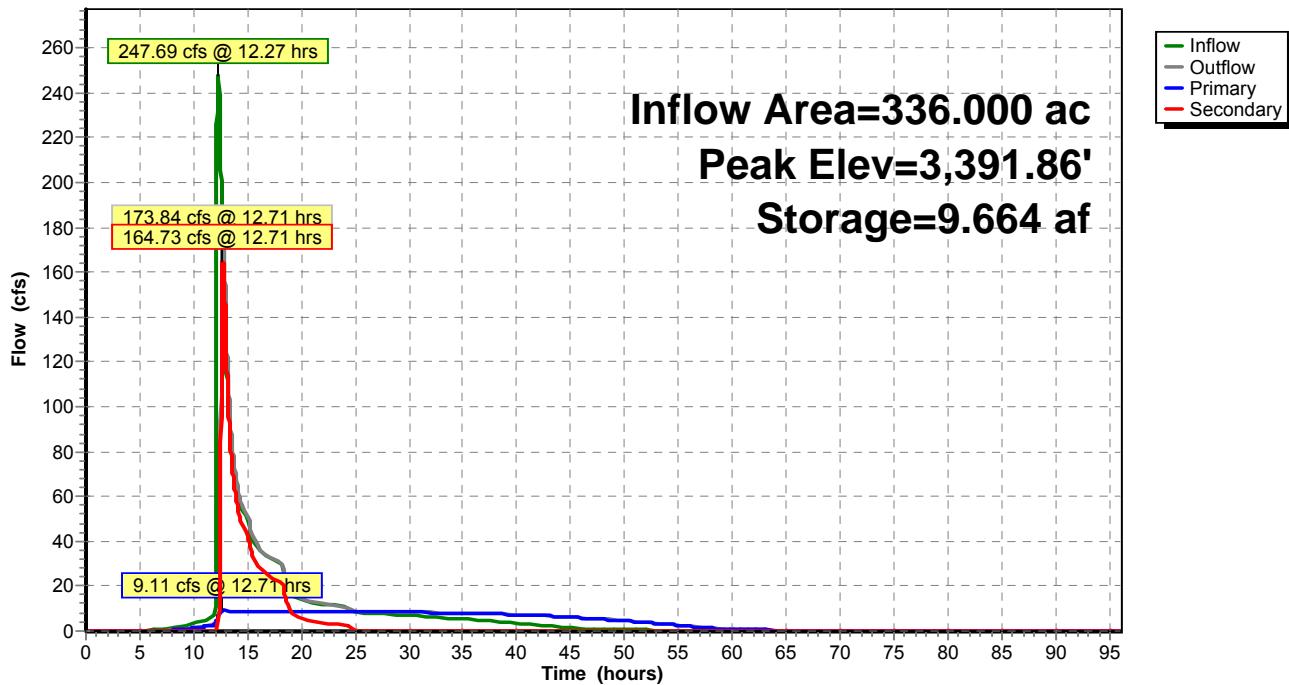
Secondary OutFlow Max=238.12 cfs @ 12.27 hrs HW=3,399.17' (Free Discharge)
 ↗ 1=Broad-Crested Rectangular Weir (Weir Controls 238.12 cfs @ 3.13 fps)

Pond Pond A: Pond A**Hydrograph**

Summary for Pond Pond B: Pond B

Inflow Area = 336.000 ac, 52.98% Impervious, Inflow Depth = 1.94" for 100-Year event
 Inflow = 247.69 cfs @ 12.27 hrs, Volume= 54.246 af
 Outflow = 173.84 cfs @ 12.71 hrs, Volume= 54.226 af, Atten= 30%, Lag= 26.8 min
 Primary = 9.11 cfs @ 12.71 hrs, Volume= 27.233 af
 Secondary = 164.73 cfs @ 12.71 hrs, Volume= 26.993 af

Routing by Stor-Ind method, Time Span= 0.00-96.00 hrs, dt= 0.01 hrs
 Peak Elev= 3,391.86' @ 12.71 hrs Surf.Area= 1.798 ac Storage= 9.664 af
 Flood Elev= 3,393.58' Surf.Area= 1.960 ac Storage= 12.890 af


Plug-Flow detention time= 301.2 min calculated for 54.220 af (100% of inflow)
 Center-of-Mass det. time= 299.6 min (1,405.1 - 1,105.5)

Volume	Invert	Avail.Storage	Storage Description		
#1	3,385.00'	12.890 af	Custom Stage Data (Irregular) Listed below (Recalc)		
Elevation (feet)	Surf.Area (acres)	Perim. (feet)	Inc.Store (acre-feet)	Cum.Store (acre-feet)	Wet.Area (acres)
3,385.00	0.450	906.0	0.000	0.000	0.450
3,386.00	1.160	1,554.0	0.777	0.777	3.362
3,387.00	1.340	1,542.0	1.249	2.026	3.439
3,388.00	1.440	1,585.0	1.390	3.416	3.687
3,389.00	1.530	1,614.0	1.485	4.901	3.861
3,390.00	1.620	1,644.0	1.575	6.476	4.043
3,391.00	1.720	1,671.0	1.670	8.145	4.211
3,392.00	1.810	1,701.0	1.765	9.910	4.400
3,392.50	1.860	1,718.0	0.917	10.828	4.508
3,393.58	1.960	1,752.0	2.063	12.890	4.727

Device	Routing	Invert	Outlet Devices								
#1	Secondary	3,391.00'	71.0' long x 1.0' breadth Broad-Crested Rectangular Weir Head (feet) 0.20 0.40 0.60 0.80 1.00 1.20 1.40 1.60 1.80 2.00 2.50 3.00 Coef. (English) 2.69 2.72 2.75 2.85 2.98 3.08 3.20 3.28 3.31 3.30 3.31 3.32								
#2	Primary	3,385.00'	9.0" W x 12.0" H Vert. Orifice/Grate C= 0.600								

Primary OutFlow Max=9.11 cfs @ 12.71 hrs HW=3,391.86' (Free Discharge)
 ↑ 2=Orifice/Grate (Orifice Controls 9.11 cfs @ 12.14 fps)

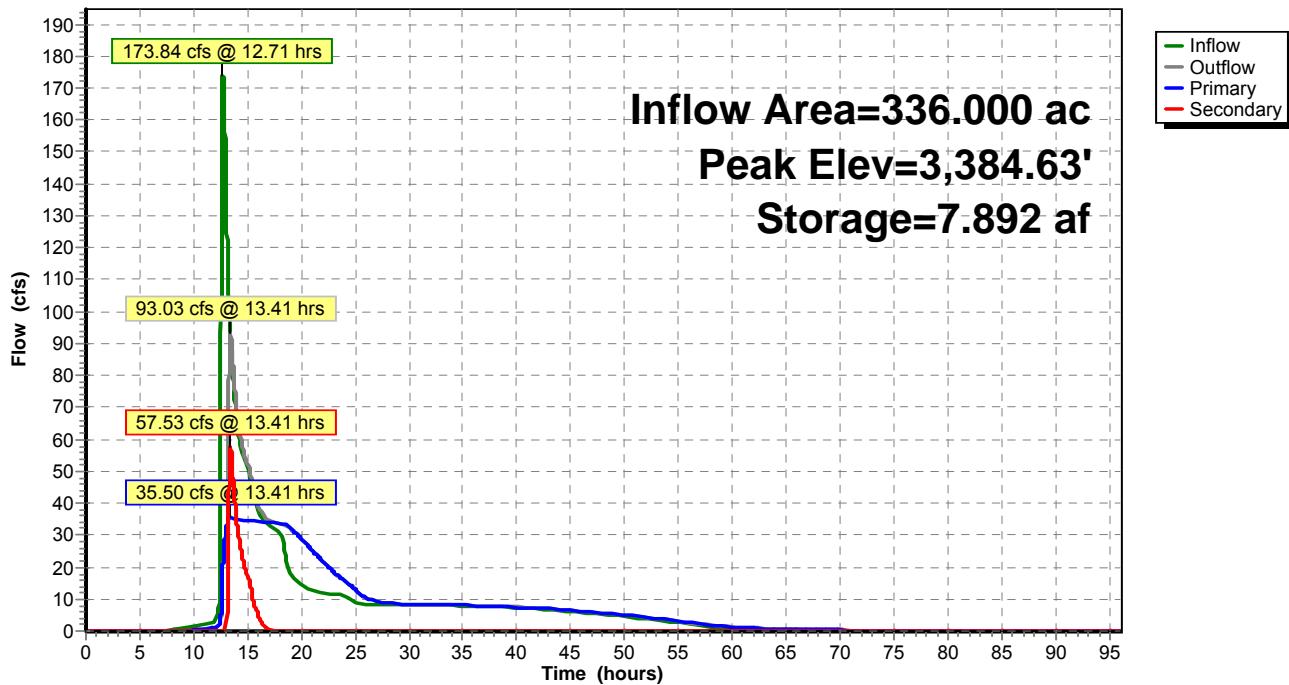
Secondary OutFlow Max=164.70 cfs @ 12.71 hrs HW=3,391.86' (Free Discharge)
 ↑ 1=Broad-Crested Rectangular Weir (Weir Controls 164.70 cfs @ 2.69 fps)

Pond Pond B: Pond B**Hydrograph**

Summary for Pond Pond C: Pond C

Inflow Area = 336.000 ac, 52.98% Impervious, Inflow Depth > 1.94" for 100-Year event
 Inflow = 173.84 cfs @ 12.71 hrs, Volume= 54.226 af
 Outflow = 93.03 cfs @ 13.41 hrs, Volume= 54.151 af, Atten= 46%, Lag= 41.7 min
 Primary = 35.50 cfs @ 13.41 hrs, Volume= 48.055 af
 Secondary = 57.53 cfs @ 13.41 hrs, Volume= 6.096 af

Routing by Stor-Ind method, Time Span= 0.00-96.00 hrs, dt= 0.01 hrs
 Peak Elev= 3,384.63' @ 13.41 hrs Surf.Area= 1.562 ac Storage= 7.892 af
 Flood Elev= 3,386.61' Surf.Area= 1.770 ac Storage= 11.199 af


Plug-Flow detention time= 117.1 min calculated for 54.151 af (100% of inflow)
 Center-of-Mass det. time= 112.0 min (1,517.2 - 1,405.1)

Volume	Invert	Avail.Storage	Storage Description		
#1	3,378.12'	11.199 af	Custom Stage Data (Irregular)	Listed below (Recalc)	
Elevation (feet)	Surf.Area (acres)	Perim. (feet)	Inc.Store (acre-feet)	Cum.Store (acre-feet)	Wet.Area (acres)
3,378.12	0.880	1,462.0	0.000	0.000	0.880
3,379.00	0.880	1,462.0	0.774	0.774	0.910
3,380.00	1.080	1,574.0	0.978	1.753	1.532
3,381.00	1.190	1,649.0	1.135	2.887	1.975
3,382.00	1.300	1,687.0	1.245	4.132	2.210
3,383.00	1.400	1,720.0	1.350	5.482	2.419
3,384.00	1.500	1,752.0	1.450	6.931	2.626
3,385.00	1.600	1,765.0	1.550	8.481	2.718
3,385.50	1.660	1,780.0	0.815	9.296	2.818
3,386.61	1.770	1,815.0	1.903	11.199	3.052

Device	Routing	Invert	Outlet Devices								
#1	Secondary	3,384.20'	72.3' long x 0.7' breadth Broad-Crested Rectangular Weir								
			Head (feet) 0.20 0.40 0.60 0.80 1.00 1.20 1.40 1.60 1.80 2.00								
			2.50								
			Coef. (English) 2.76 2.82 2.93 3.09 3.18 3.22 3.27 3.30 3.32								
			3.31 3.32								
#2	Primary	3,378.12'	24.0" Round Culvert								
			L= 464.0' RCP, square edge headwall, Ke= 0.500								
			Inlet / Outlet Invert= 3,378.12' / 3,362.61' S= 0.0334 '/' Cc= 0.900								
			n= 0.012 Concrete pipe, finished, Flow Area= 3.14 sf								

Primary OutFlow Max=35.50 cfs @ 13.41 hrs HW=3,384.63' (Free Discharge)
 ↑ 2=Culvert (Inlet Controls 35.50 cfs @ 11.30 fps)

Secondary OutFlow Max=57.22 cfs @ 13.41 hrs HW=3,384.63' (Free Discharge)
 ↑ 1=Broad-Crested Rectangular Weir (Weir Controls 57.22 cfs @ 1.85 fps)

Pond Pond C: Pond C**Hydrograph**

Summary for Pond Pond D: Pond D

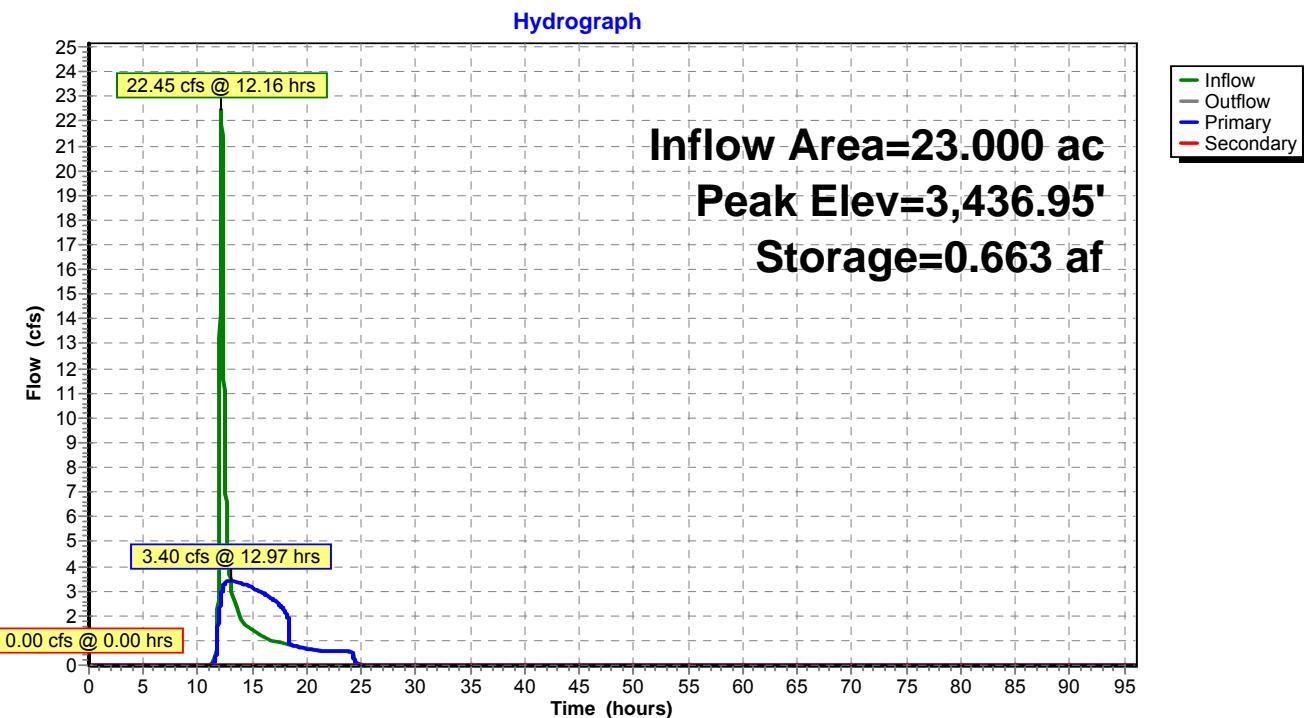
Inflow Area = 23.000 ac, 4.35% Impervious, Inflow Depth = 0.99" for 100-Year event
 Inflow = 22.45 cfs @ 12.16 hrs, Volume= 1.894 af
 Outflow = 3.40 cfs @ 12.97 hrs, Volume= 1.894 af, Atten= 85%, Lag= 48.3 min
 Primary = 3.40 cfs @ 12.97 hrs, Volume= 1.894 af
 Secondary = 0.00 cfs @ 0.00 hrs, Volume= 0.000 af

Routing by Stor-Ind method, Time Span= 0.00-96.00 hrs, dt= 0.01 hrs
 Peak Elev= 3,436.95' @ 12.97 hrs Surf.Area= 0.358 ac Storage= 0.663 af
 Flood Elev= 3,443.00' Surf.Area= 0.850 ac Storage= 3.671 af

Plug-Flow detention time= 74.8 min calculated for 1.894 af (100% of inflow)
 Center-of-Mass det. time= 74.8 min (954.3 - 879.5)

Volume	Invert	Avail.Storage	Storage Description		
#1	3,433.00'	3.671 af	Custom Stage Data (Irregular)	Listed below (Recalc)	
Elevation (feet)	Surf.Area (acres)	Perim. (feet)	Inc.Store (acre-feet)	Cum.Store (acre-feet)	Wet.Area (acres)
3,433.00	0.000	0.0	0.000	0.000	0.000
3,433.50	0.001	44.0	0.000	0.000	0.004
3,434.00	0.020	127.0	0.004	0.004	0.029
3,434.50	0.090	260.0	0.025	0.030	0.124
3,435.00	0.170	370.0	0.064	0.094	0.250
3,435.50	0.260	434.0	0.107	0.200	0.344
3,436.00	0.310	481.0	0.142	0.343	0.423
3,436.50	0.340	529.0	0.162	0.505	0.512
3,437.00	0.360	540.0	0.175	0.680	0.534
3,437.50	0.380	556.0	0.185	0.865	0.567
3,438.00	0.400	585.0	0.195	1.060	0.628
3,438.50	0.420	590.0	0.205	1.265	0.640
3,439.00	0.440	598.0	0.215	1.480	0.659
3,439.50	0.460	613.0	0.225	1.705	0.693
3,440.00	0.480	639.0	0.235	1.940	0.753
3,440.50	0.510	666.0	0.247	2.188	0.818
3,441.00	0.530	694.0	0.260	2.448	0.888
3,441.50	0.550	721.0	0.270	2.718	0.958
3,442.00	0.580	755.0	0.282	3.000	1.050
3,442.50	0.630	806.0	0.302	3.302	1.196
3,443.00	0.850	826.0	0.369	3.671	1.256

Device	Routing	Invert	Outlet Devices	
#1	Primary	3,433.00'	10.0" Round Culvert	
			L= 128.0' RCP, sq.cut end projecting, Ke= 0.500 Inlet / Outlet Invert= 3,433.00' / 3,432.13' S= 0.0068 '/' Cc= 0.900 n= 0.013 Cast iron, coated, Flow Area= 0.55 sf	
#2	Secondary	3,438.31'	60.0" Horiz. Orifice/Grate C= 0.600 Limited to weir flow at low heads	


Primary OutFlow Max=3.40 cfs @ 12.97 hrs HW=3,436.95' (Free Discharge)

↑
1=Culvert (Barrel Controls 3.40 cfs @ 6.23 fps)

Secondary OutFlow Max=0.00 cfs @ 0.00 hrs HW=3,433.00' (Free Discharge)

↑
2=Orifice/Grate (Controls 0.00 cfs)

Pond Pond D: Pond D

Summary for Pond Pond E: Pond E

[81] Warning: Exceeded Pond 404 by 3.10' @ 13.97 hrs

Inflow Area = 255.000 ac, 25.49% Impervious, Inflow Depth = 1.37" for 100-Year event
 Inflow = 197.76 cfs @ 12.38 hrs, Volume= 29.106 af
 Outflow = 42.49 cfs @ 13.41 hrs, Volume= 29.106 af, Atten= 79%, Lag= 61.9 min
 Primary = 42.49 cfs @ 13.41 hrs, Volume= 29.106 af
 Secondary = 0.00 cfs @ 0.00 hrs, Volume= 0.000 af

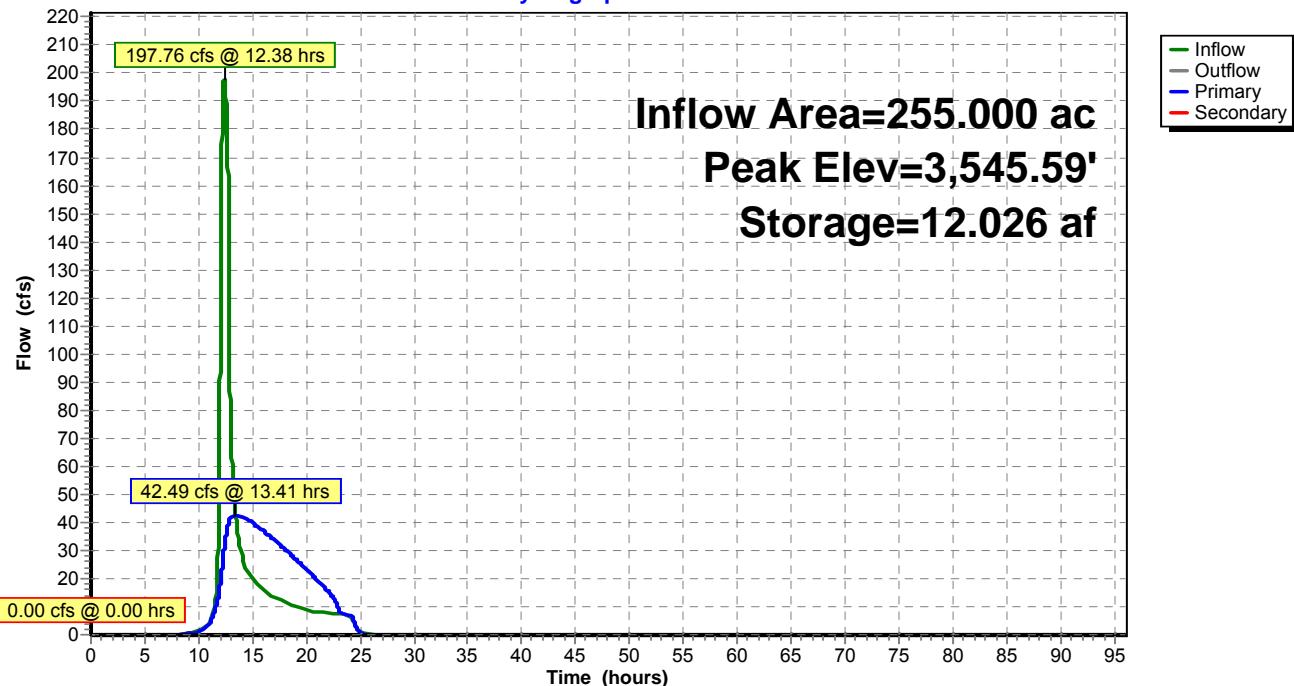
Routing by Stor-Ind method, Time Span= 0.00-96.00 hrs, dt= 0.01 hrs
 Peak Elev= 3,545.59' @ 13.41 hrs Surf.Area= 1.947 ac Storage= 12.026 af
 Flood Elev= 3,545.65' Surf.Area= 1.951 ac Storage= 12.146 af

Plug-Flow detention time= (not calculated: outflow precedes inflow)

Center-of-Mass det. time= 129.4 min (999.3 - 869.9)

Volume	Invert	Avail.Storage	Storage Description		
#1	3,536.70'	15.883 af	Custom Stage Data (Irregular)	Listed below (Recalc)	
Elevation (feet)	Surf.Area (acres)	Perim. (feet)	Inc.Store (acre-feet)	Cum.Store (acre-feet)	Wet.Area (acres)
3,536.70	0.000	0.0	0.000	0.000	0.000
3,537.50	0.020	12.0	0.005	0.005	0.000
3,538.00	0.060	271.0	0.019	0.024	0.134
3,538.50	0.900	814.0	0.199	0.223	1.211
3,539.00	1.350	996.0	0.559	0.782	1.812
3,539.50	1.490	1,032.0	0.710	1.492	1.946
3,540.00	1.560	1,070.0	0.762	2.254	2.093
3,540.50	1.590	1,083.0	0.787	3.042	2.145
3,541.00	1.620	1,098.0	0.802	3.844	2.206
3,541.50	1.660	1,111.0	0.820	4.664	2.260
3,542.00	1.690	1,122.0	0.837	5.501	2.307
3,542.50	1.730	1,134.0	0.855	6.356	2.358
3,543.00	1.760	1,146.0	0.872	7.229	2.410
3,543.50	1.800	1,158.0	0.890	8.119	2.462
3,544.00	1.830	1,169.0	0.907	9.026	2.511
3,544.50	1.870	1,180.0	0.925	9.951	2.560
3,545.00	1.900	1,191.0	0.942	10.894	2.609
3,545.50	1.940	1,202.0	0.960	11.854	2.659
3,547.50	2.090	1,244.0	4.029	15.883	2.855

Device	Routing	Invert	Outlet Devices	
#1	Primary	3,536.70'	24.0" Round Culvert	
			L= 177.0' RCP, square edge headwall, Ke= 0.500 Inlet / Outlet Invert= 3,536.70' / 3,526.41' S= 0.0581 '/' Cc= 0.900 n= 0.012 Concrete pipe, finished, Flow Area= 3.14 sf	
#2	Secondary	3,545.65'	71.0' long x 1.0' breadth Broad-Crested Rectangular Weir Head (feet) 0.20 0.40 0.60 0.80 1.00 1.20 1.40 1.60 1.80 2.00 2.50 3.00 Coef. (English) 2.69 2.72 2.75 2.85 2.98 3.08 3.20 3.28 3.31	


3.30 3.31 3.32

Primary OutFlow Max=42.49 cfs @ 13.41 hrs HW=3,545.59' (Free Discharge)
 ↑
 1=Culvert (Inlet Controls 42.49 cfs @ 13.52 fps)

Secondary OutFlow Max=0.00 cfs @ 0.00 hrs HW=3,536.70' (Free Discharge)
 ↑
 2=Broad-Crested Rectangular Weir (Controls 0.00 cfs)

Pond Pond E: Pond E

Hydrograph

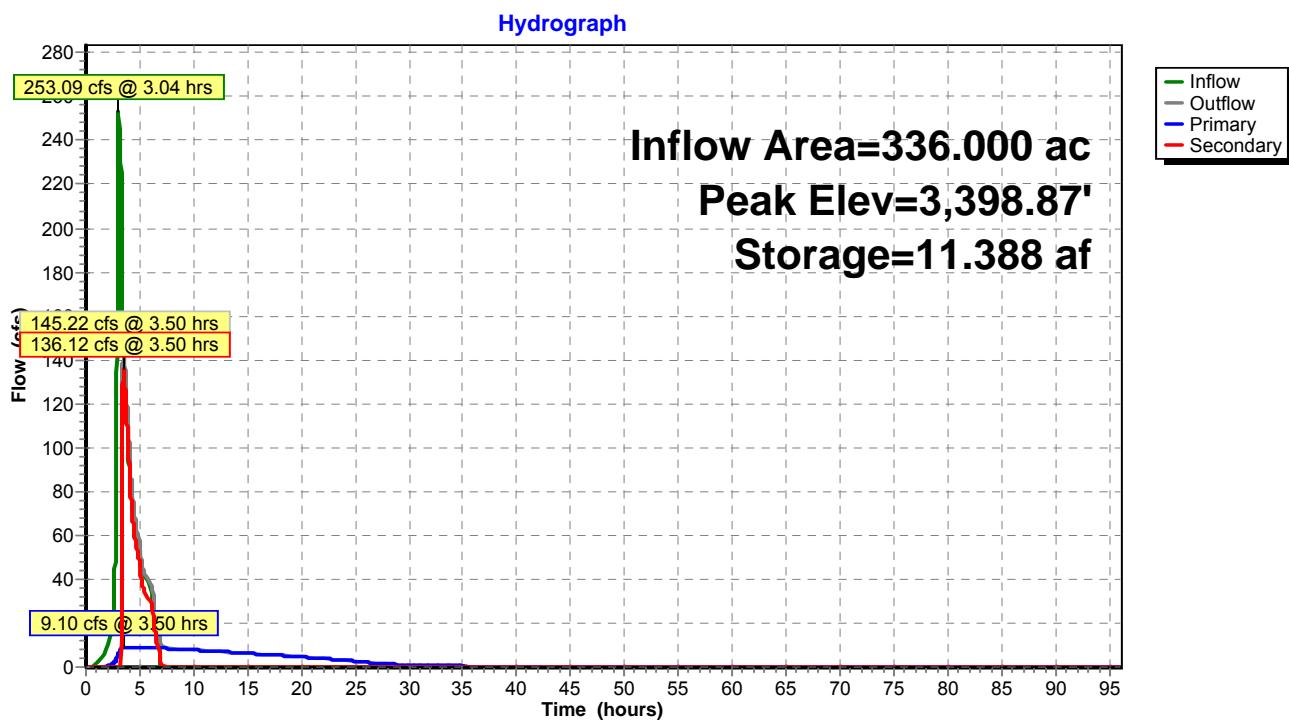
**June 20, 2010 Storm Approximation:
100-YEAR, 6-HOUR STORM**

Summary for Pond Pond A: Pond A

[79] Warning: Submerged Pond 107 Primary device # 1 OUTLET by 1.69'

Inflow Area = 336.000 ac, 52.98% Impervious, Inflow Depth = 1.03" for June 2010 event
 Inflow = 253.09 cfs @ 3.04 hrs, Volume= 28.845 af
 Outflow = 145.22 cfs @ 3.50 hrs, Volume= 28.831 af, Atten= 43%, Lag= 27.5 min
 Primary = 9.10 cfs @ 3.50 hrs, Volume= 13.043 af
 Secondary = 136.12 cfs @ 3.50 hrs, Volume= 15.788 af

Routing by Stor-Ind method, Time Span= 0.00-96.00 hrs, dt= 0.01 hrs
 Peak Elev= 3,398.87' @ 3.50 hrs Surf.Area= 2.018 ac Storage= 11.388 af
 Flood Elev= 3,400.49' Surf.Area= 2.160 ac Storage= 14.769 af


Plug-Flow detention time= 298.3 min calculated for 28.831 af (100% of inflow)
 Center-of-Mass det. time= 298.0 min (531.9 - 233.9)

Volume	Invert	Avail.Storage	Storage Description		
#1	3,392.02'	14.769 af	Custom Stage Data (Irregular)	Listed below (Recalc)	
Elevation (feet)	Surf.Area (acres)	Perim. (feet)	Inc.Store (acre-feet)	Cum.Store (acre-feet)	Wet.Area (acres)
3,392.02	1.210	1,096.0	0.000	0.000	1.210
3,393.00	1.210	1,096.0	1.186	1.186	1.235
3,394.00	1.590	1,124.0	1.396	2.581	1.351
3,395.00	1.690	1,158.0	1.640	4.221	1.495
3,396.00	1.770	1,190.0	1.730	5.951	1.635
3,397.00	1.860	1,223.0	1.815	7.766	1.783
3,398.00	1.940	1,252.0	1.900	9.666	1.917
3,399.00	2.030	1,280.0	1.985	11.651	2.050
3,399.50	2.070	1,295.0	1.025	12.676	2.122
3,400.49	2.160	1,322.0	2.094	14.769	2.255

Device	Routing	Invert	Outlet Devices	
#1	Secondary	3,398.10'	71.0' long x 1.0' breadth Broad-Crested Rectangular Weir Head (feet) 0.20 0.40 0.60 0.80 1.00 1.20 1.40 1.60 1.80 2.00 2.50 3.00 Coef. (English) 2.69 2.72 2.75 2.85 2.98 3.08 3.20 3.28 3.31 3.30 3.31 3.32	
#2	Primary	3,392.02'	9.0" W x 12.0" H Vert. Orifice/Grate C= 0.600	

Primary OutFlow Max=9.10 cfs @ 3.50 hrs HW=3,398.87' (Free Discharge)
 ↑ 2=Orifice/Grate (Orifice Controls 9.10 cfs @ 12.13 fps)

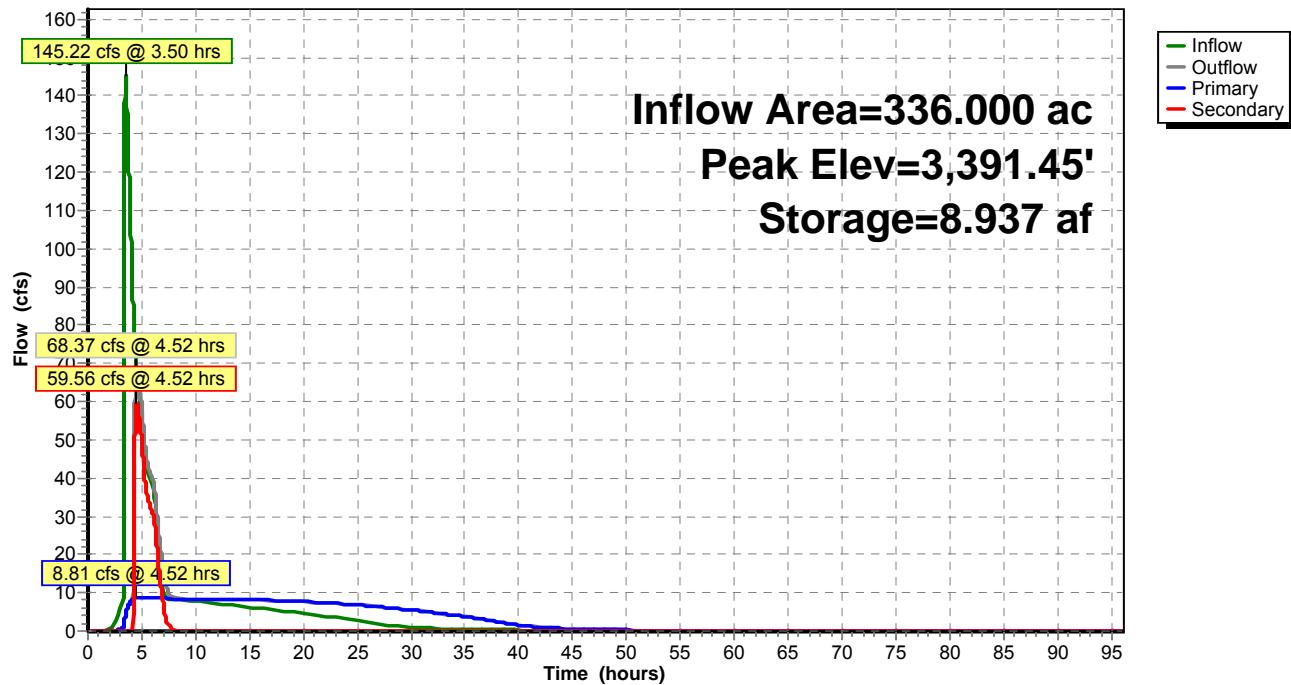
Secondary OutFlow Max=136.01 cfs @ 3.50 hrs HW=3,398.87' (Free Discharge)
 ↑ 1=Broad-Crested Rectangular Weir (Weir Controls 136.01 cfs @ 2.49 fps)

Pond Pond A: Pond A

Summary for Pond Pond B: Pond B

Inflow Area = 336.000 ac, 52.98% Impervious, Inflow Depth = 1.03" for June 2010 event
 Inflow = 145.22 cfs @ 3.50 hrs, Volume= 28.831 af
 Outflow = 68.37 cfs @ 4.52 hrs, Volume= 28.822 af, Atten= 53%, Lag= 61.4 min
 Primary = 8.81 cfs @ 4.52 hrs, Volume= 20.621 af
 Secondary = 59.56 cfs @ 4.52 hrs, Volume= 8.201 af

Routing by Stor-Ind method, Time Span= 0.00-96.00 hrs, dt= 0.01 hrs
 Peak Elev= 3,391.45' @ 4.52 hrs Surf.Area= 1.761 ac Storage= 8.937 af
 Flood Elev= 3,393.58' Surf.Area= 1.960 ac Storage= 12.890 af


Plug-Flow detention time= 409.0 min calculated for 28.819 af (100% of inflow)
 Center-of-Mass det. time= 407.5 min (939.5 - 531.9)

Volume	Invert	Avail.Storage	Storage Description		
#1	3,385.00'	12.890 af	Custom Stage Data (Irregular) Listed below (Recalc)		
Elevation (feet)	Surf.Area (acres)	Perim. (feet)	Inc.Store (acre-feet)	Cum.Store (acre-feet)	Wet.Area (acres)
3,385.00	0.450	906.0	0.000	0.000	0.450
3,386.00	1.160	1,554.0	0.777	0.777	3.362
3,387.00	1.340	1,542.0	1.249	2.026	3.439
3,388.00	1.440	1,585.0	1.390	3.416	3.687
3,389.00	1.530	1,614.0	1.485	4.901	3.861
3,390.00	1.620	1,644.0	1.575	6.476	4.043
3,391.00	1.720	1,671.0	1.670	8.145	4.211
3,392.00	1.810	1,701.0	1.765	9.910	4.400
3,392.50	1.860	1,718.0	0.917	10.828	4.508
3,393.58	1.960	1,752.0	2.063	12.890	4.727

Device	Routing	Invert	Outlet Devices								
#1	Secondary	3,391.00'	71.0' long x 1.0' breadth Broad-Crested Rectangular Weir Head (feet) 0.20 0.40 0.60 0.80 1.00 1.20 1.40 1.60 1.80 2.00 2.50 3.00 Coef. (English) 2.69 2.72 2.75 2.85 2.98 3.08 3.20 3.28 3.31 3.30 3.31 3.32								
#2	Primary	3,385.00'	9.0" W x 12.0" H Vert. Orifice/Grate C= 0.600								

Primary OutFlow Max=8.81 cfs @ 4.52 hrs HW=3,391.45' (Free Discharge)
 ↑ 2=Orifice/Grate (Orifice Controls 8.81 cfs @ 11.75 fps)

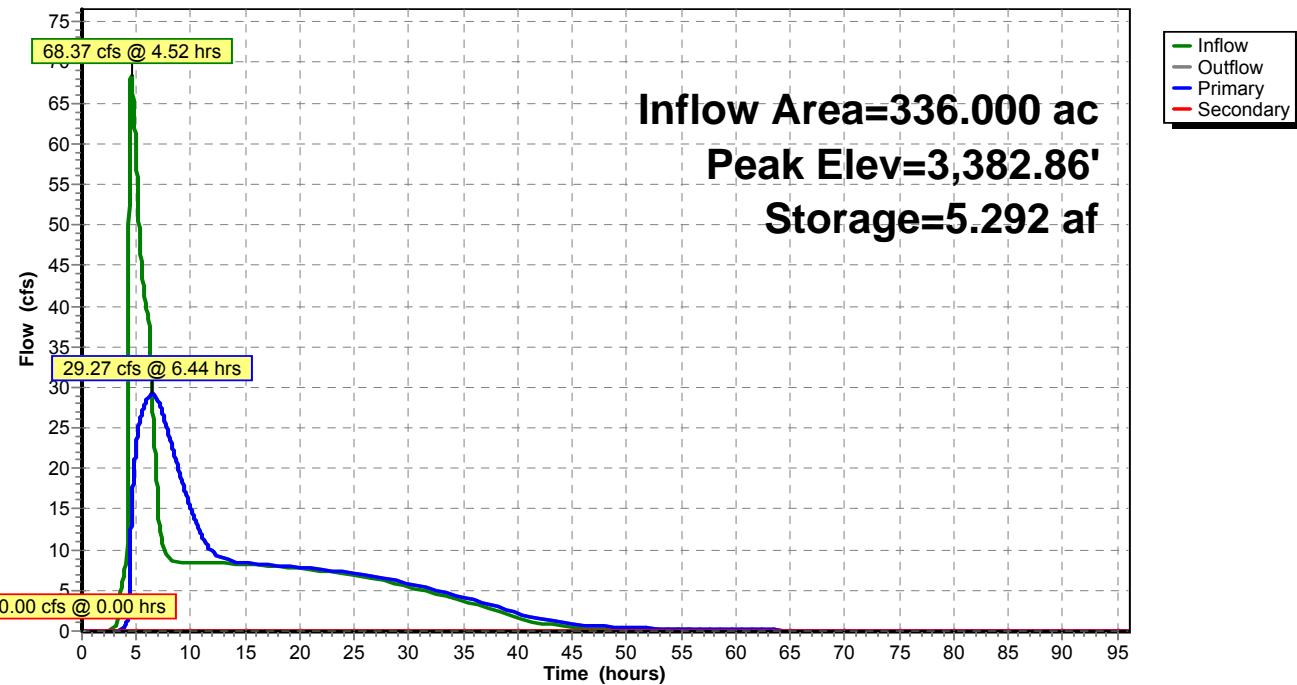
Secondary OutFlow Max=59.40 cfs @ 4.52 hrs HW=3,391.45' (Free Discharge)
 ↑ 1=Broad-Crested Rectangular Weir (Weir Controls 59.40 cfs @ 1.84 fps)

Pond Pond B: Pond B**Hydrograph**

Summary for Pond Pond C: Pond C

Inflow Area = 336.000 ac, 52.98% Impervious, Inflow Depth > 1.03" for June 2010 event
 Inflow = 68.37 cfs @ 4.52 hrs, Volume= 28.822 af
 Outflow = 29.27 cfs @ 6.44 hrs, Volume= 28.772 af, Atten= 57%, Lag= 115.1 min
 Primary = 29.27 cfs @ 6.44 hrs, Volume= 28.772 af
 Secondary = 0.00 cfs @ 0.00 hrs, Volume= 0.000 af

Routing by Stor-Ind method, Time Span= 0.00-96.00 hrs, dt= 0.01 hrs
 Peak Elev= 3,382.86' @ 6.44 hrs Surf.Area= 1.386 ac Storage= 5.292 af
 Flood Elev= 3,386.61' Surf.Area= 1.770 ac Storage= 11.199 af


Plug-Flow detention time= 121.9 min calculated for 28.772 af (100% of inflow)
 Center-of-Mass det. time= 115.0 min (1,054.5 - 939.5)

Volume	Invert	Avail.Storage	Storage Description		
#1	3,378.12'	11.199 af	Custom Stage Data (Irregular) Listed below (Recalc)		
Elevation (feet)	Surf.Area (acres)	Perim. (feet)	Inc.Store (acre-feet)	Cum.Store (acre-feet)	Wet.Area (acres)
3,378.12	0.880	1,462.0	0.000	0.000	0.880
3,379.00	0.880	1,462.0	0.774	0.774	0.910
3,380.00	1.080	1,574.0	0.978	1.753	1.532
3,381.00	1.190	1,649.0	1.135	2.887	1.975
3,382.00	1.300	1,687.0	1.245	4.132	2.210
3,383.00	1.400	1,720.0	1.350	5.482	2.419
3,384.00	1.500	1,752.0	1.450	6.931	2.626
3,385.00	1.600	1,765.0	1.550	8.481	2.718
3,385.50	1.660	1,780.0	0.815	9.296	2.818
3,386.61	1.770	1,815.0	1.903	11.199	3.052

Device	Routing	Invert	Outlet Devices								
#1	Secondary	3,384.20'	72.3' long x 0.7' breadth Broad-Crested Rectangular Weir								
			Head (feet) 0.20 0.40 0.60 0.80 1.00 1.20 1.40 1.60 1.80 2.00								
			2.50								
			Coef. (English) 2.76 2.82 2.93 3.09 3.18 3.22 3.27 3.30 3.32								
			3.31 3.32								
#2	Primary	3,378.12'	24.0" Round Culvert								
			L= 464.0' RCP, square edge headwall, Ke= 0.500								
			Inlet / Outlet Invert= 3,378.12' / 3,362.61' S= 0.0334 '/' Cc= 0.900								
			n= 0.012 Concrete pipe, finished, Flow Area= 3.14 sf								

Primary OutFlow Max=29.27 cfs @ 6.44 hrs HW=3,382.86' (Free Discharge)
 ↑ 2=Culvert (Inlet Controls 29.27 cfs @ 9.32 fps)

Secondary OutFlow Max=0.00 cfs @ 0.00 hrs HW=3,378.12' (Free Discharge)
 ↑ 1=Broad-Crested Rectangular Weir (Controls 0.00 cfs)

Pond Pond C: Pond C**Hydrograph**

Summary for Pond Pond D: Pond D

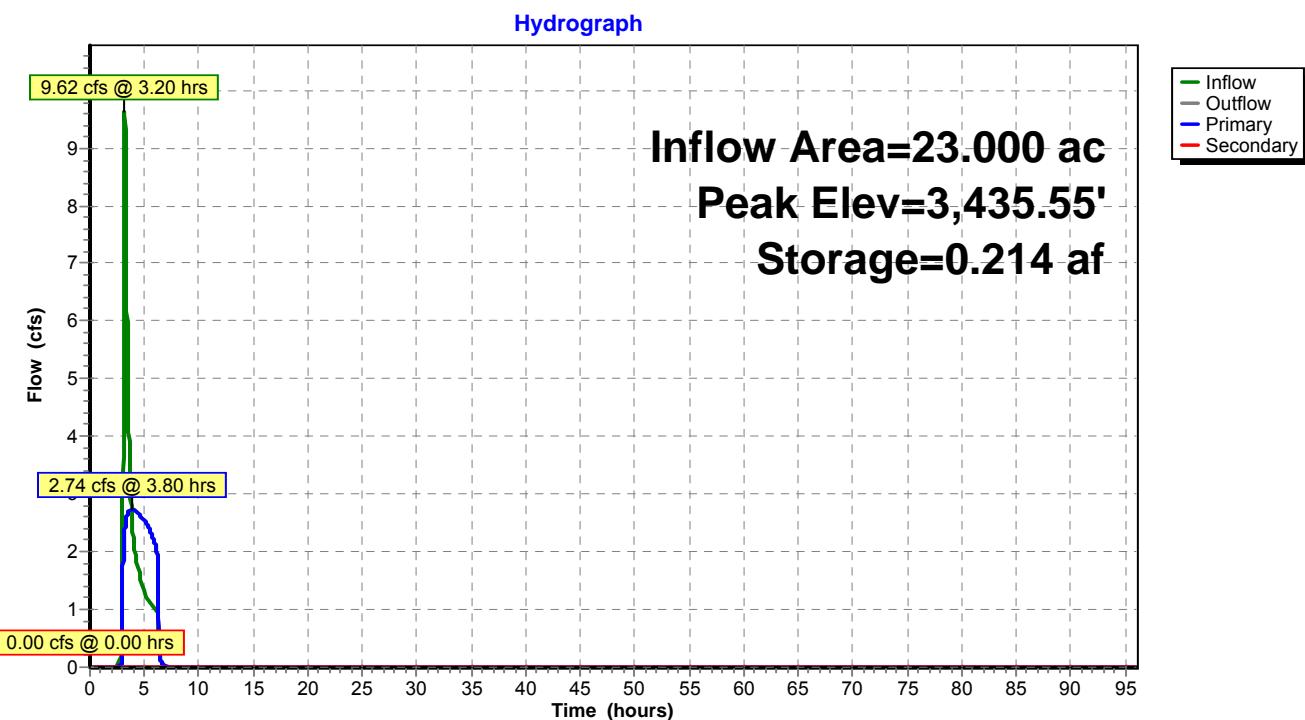
Inflow Area = 23.000 ac, 4.35% Impervious, Inflow Depth = 0.36" for June 2010 event
 Inflow = 9.62 cfs @ 3.20 hrs, Volume= 0.688 af
 Outflow = 2.74 cfs @ 3.80 hrs, Volume= 0.688 af, Atten= 72%, Lag= 36.3 min
 Primary = 2.74 cfs @ 3.80 hrs, Volume= 0.688 af
 Secondary = 0.00 cfs @ 0.00 hrs, Volume= 0.000 af

Routing by Stor-Ind method, Time Span= 0.00-96.00 hrs, dt= 0.01 hrs
 Peak Elev= 3,435.55' @ 3.80 hrs Surf.Area= 0.265 ac Storage= 0.214 af
 Flood Elev= 3,443.00' Surf.Area= 0.850 ac Storage= 3.671 af

Plug-Flow detention time= 36.0 min calculated for 0.688 af (100% of inflow)
 Center-of-Mass det. time= 36.0 min (276.3 - 240.2)

Volume	Invert	Avail.Storage	Storage Description		
#1	3,433.00'	3.671 af	Custom Stage Data (Irregular)	Listed below (Recalc)	
Elevation (feet)	Surf.Area (acres)	Perim. (feet)	Inc.Store (acre-feet)	Cum.Store (acre-feet)	Wet.Area (acres)
3,433.00	0.000	0.0	0.000	0.000	0.000
3,433.50	0.001	44.0	0.000	0.000	0.004
3,434.00	0.020	127.0	0.004	0.004	0.029
3,434.50	0.090	260.0	0.025	0.030	0.124
3,435.00	0.170	370.0	0.064	0.094	0.250
3,435.50	0.260	434.0	0.107	0.200	0.344
3,436.00	0.310	481.0	0.142	0.343	0.423
3,436.50	0.340	529.0	0.162	0.505	0.512
3,437.00	0.360	540.0	0.175	0.680	0.534
3,437.50	0.380	556.0	0.185	0.865	0.567
3,438.00	0.400	585.0	0.195	1.060	0.628
3,438.50	0.420	590.0	0.205	1.265	0.640
3,439.00	0.440	598.0	0.215	1.480	0.659
3,439.50	0.460	613.0	0.225	1.705	0.693
3,440.00	0.480	639.0	0.235	1.940	0.753
3,440.50	0.510	666.0	0.247	2.188	0.818
3,441.00	0.530	694.0	0.260	2.448	0.888
3,441.50	0.550	721.0	0.270	2.718	0.958
3,442.00	0.580	755.0	0.282	3.000	1.050
3,442.50	0.630	806.0	0.302	3.302	1.196
3,443.00	0.850	826.0	0.369	3.671	1.256

Device	Routing	Invert	Outlet Devices	
#1	Primary	3,433.00'	10.0" Round Culvert	
			L= 128.0' RCP, sq.cut end projecting, Ke= 0.500 Inlet / Outlet Invert= 3,433.00' / 3,432.13' S= 0.0068 '/' Cc= 0.900 n= 0.013 Cast iron, coated, Flow Area= 0.55 sf	
#2	Secondary	3,438.31'	60.0" Horiz. Orifice/Grate C= 0.600 Limited to weir flow at low heads	


Primary OutFlow Max=2.74 cfs @ 3.80 hrs HW=3,435.55' (Free Discharge)

1=Culvert (Barrel Controls 2.74 cfs @ 5.02 fps)

Secondary OutFlow Max=0.00 cfs @ 0.00 hrs HW=3,433.00' (Free Discharge)

2=Orifice/Grate (Controls 0.00 cfs)

Pond Pond D: Pond D

Summary for Pond Pond E: Pond E

[81] Warning: Exceeded Pond 404 by 0.01' @ 5.01 hrs

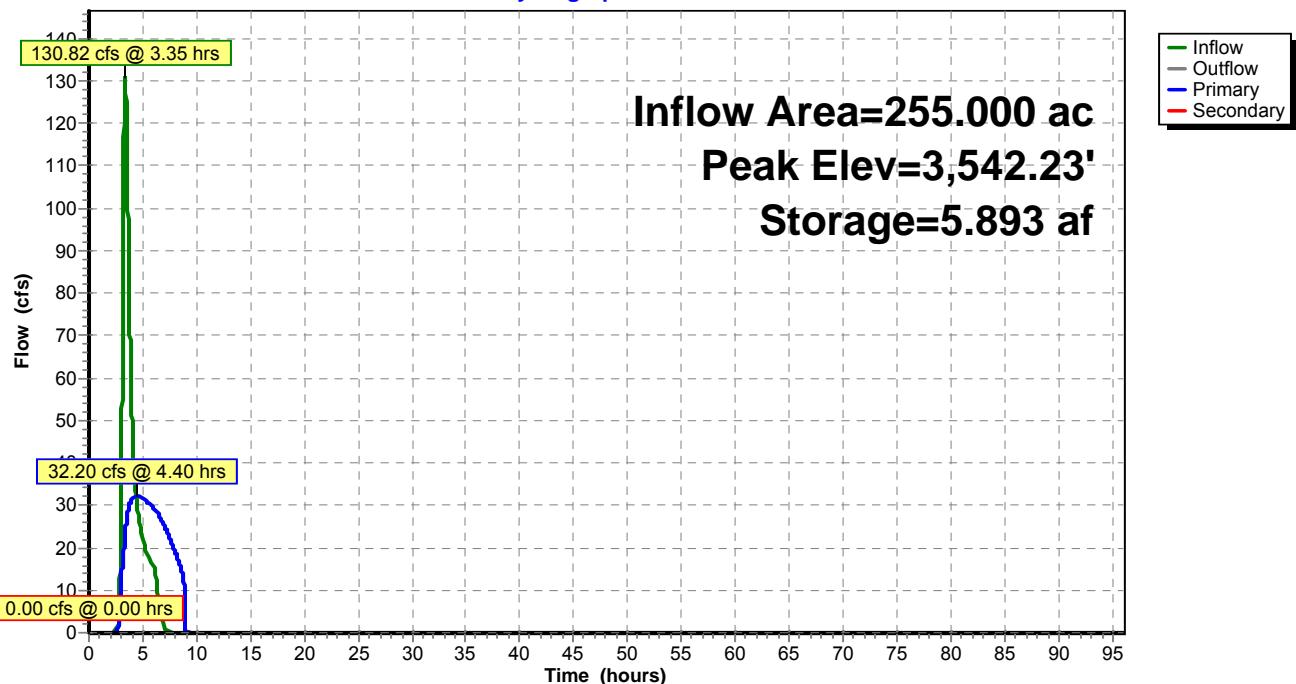
Inflow Area = 255.000 ac, 25.49% Impervious, Inflow Depth = 0.60" for June 2010 event
 Inflow = 130.82 cfs @ 3.35 hrs, Volume= 12.699 af
 Outflow = 32.20 cfs @ 4.40 hrs, Volume= 12.699 af, Atten= 75%, Lag= 62.8 min
 Primary = 32.20 cfs @ 4.40 hrs, Volume= 12.699 af
 Secondary = 0.00 cfs @ 0.00 hrs, Volume= 0.000 af

Routing by Stor-Ind method, Time Span= 0.00-96.00 hrs, dt= 0.01 hrs
 Peak Elev= 3,542.23' @ 4.40 hrs Surf.Area= 1.708 ac Storage= 5.893 af
 Flood Elev= 3,545.65' Surf.Area= 1.951 ac Storage= 12.146 af

Plug-Flow detention time= 97.2 min calculated for 12.698 af (100% of inflow)
 Center-of-Mass det. time= 97.2 min (340.2 - 243.0)

Volume	Invert	Avail.Storage	Storage Description		
#1	3,536.70'	15.883 af	Custom Stage Data (Irregular)	Listed below (Recalc)	
Elevation (feet)	Surf.Area (acres)	Perim. (feet)	Inc.Store (acre-feet)	Cum.Store (acre-feet)	Wet.Area (acres)
3,536.70	0.000	0.0	0.000	0.000	0.000
3,537.50	0.020	12.0	0.005	0.005	0.000
3,538.00	0.060	271.0	0.019	0.024	0.134
3,538.50	0.900	814.0	0.199	0.223	1.211
3,539.00	1.350	996.0	0.559	0.782	1.812
3,539.50	1.490	1,032.0	0.710	1.492	1.946
3,540.00	1.560	1,070.0	0.762	2.254	2.093
3,540.50	1.590	1,083.0	0.787	3.042	2.145
3,541.00	1.620	1,098.0	0.802	3.844	2.206
3,541.50	1.660	1,111.0	0.820	4.664	2.260
3,542.00	1.690	1,122.0	0.837	5.501	2.307
3,542.50	1.730	1,134.0	0.855	6.356	2.358
3,543.00	1.760	1,146.0	0.872	7.229	2.410
3,543.50	1.800	1,158.0	0.890	8.119	2.462
3,544.00	1.830	1,169.0	0.907	9.026	2.511
3,544.50	1.870	1,180.0	0.925	9.951	2.560
3,545.00	1.900	1,191.0	0.942	10.894	2.609
3,545.50	1.940	1,202.0	0.960	11.854	2.659
3,547.50	2.090	1,244.0	4.029	15.883	2.855

Device	Routing	Invert	Outlet Devices	
#1	Primary	3,536.70'	24.0" Round Culvert	
			L= 177.0' RCP, square edge headwall, Ke= 0.500 Inlet / Outlet Invert= 3,536.70' / 3,526.41' S= 0.0581 '/' Cc= 0.900 n= 0.012 Concrete pipe, finished, Flow Area= 3.14 sf	
#2	Secondary	3,545.65'	71.0' long x 1.0' breadth Broad-Crested Rectangular Weir Head (feet) 0.20 0.40 0.60 0.80 1.00 1.20 1.40 1.60 1.80 2.00 2.50 3.00 Coef. (English) 2.69 2.72 2.75 2.85 2.98 3.08 3.20 3.28 3.31	


3.30 3.31 3.32

Primary OutFlow Max=32.20 cfs @ 4.40 hrs HW=3,542.23' (Free Discharge)
 ↑
 1=Culvert (Inlet Controls 32.20 cfs @ 10.25 fps)

Secondary OutFlow Max=0.00 cfs @ 0.00 hrs HW=3,536.70' (Free Discharge)
 ↑
 2=Broad-Crested Rectangular Weir (Controls 0.00 cfs)

Pond Pond E: Pond E

Hydrograph

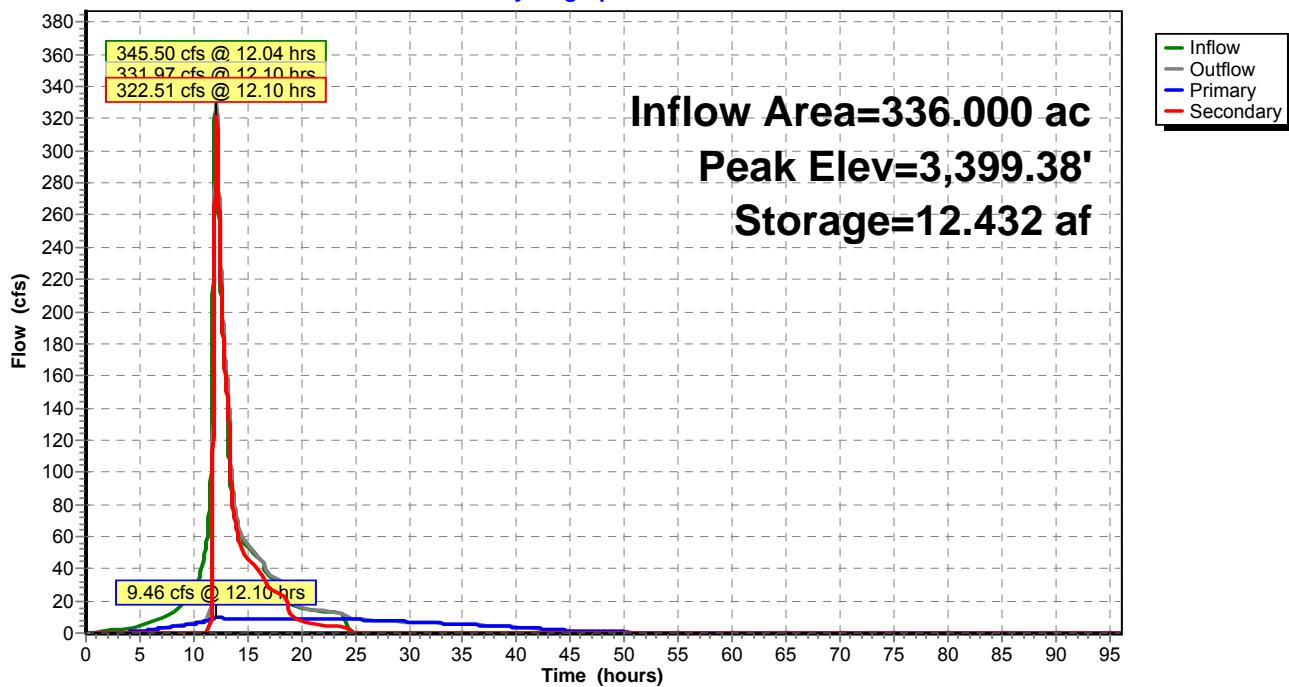
**May 24, 2011 Storm Approximation:
100-YEAR, 24-HOUR STORM with AMC=3**

Summary for Pond Pond A: Pond A

[79] Warning: Submerged Pond 107 Primary device # 1 OUTLET by 2.20'

Inflow Area = 336.000 ac, 52.98% Impervious, Inflow Depth = 2.51" for May 2011 event
 Inflow = 345.50 cfs @ 12.04 hrs, Volume= 70.293 af
 Outflow = 331.97 cfs @ 12.10 hrs, Volume= 70.261 af, Atten= 4%, Lag= 3.5 min
 Primary = 9.46 cfs @ 12.10 hrs, Volume= 21.579 af
 Secondary = 322.51 cfs @ 12.10 hrs, Volume= 48.682 af

Routing by Stor-Ind method, Time Span= 0.00-96.00 hrs, dt= 0.01 hrs
 Peak Elev= 3,399.38' @ 12.10 hrs Surf.Area= 2.061 ac Storage= 12.432 af
 Flood Elev= 3,400.49' Surf.Area= 2.160 ac Storage= 14.769 af


Plug-Flow detention time= 216.0 min calculated for 70.253 af (100% of inflow)
 Center-of-Mass det. time= 216.1 min (1,034.6 - 818.5)

Volume	Invert	Avail.Storage	Storage Description		
#1	3,392.02'	14.769 af	Custom Stage Data (Irregular)	Listed below (Recalc)	
Elevation (feet)	Surf.Area (acres)	Perim. (feet)	Inc.Store (acre-feet)	Cum.Store (acre-feet)	Wet.Area (acres)
3,392.02	1.210	1,096.0	0.000	0.000	1.210
3,393.00	1.210	1,096.0	1.186	1.186	1.235
3,394.00	1.590	1,124.0	1.396	2.581	1.351
3,395.00	1.690	1,158.0	1.640	4.221	1.495
3,396.00	1.770	1,190.0	1.730	5.951	1.635
3,397.00	1.860	1,223.0	1.815	7.766	1.783
3,398.00	1.940	1,252.0	1.900	9.666	1.917
3,399.00	2.030	1,280.0	1.985	11.651	2.050
3,399.50	2.070	1,295.0	1.025	12.676	2.122
3,400.49	2.160	1,322.0	2.094	14.769	2.255

Device	Routing	Invert	Outlet Devices								
#1	Secondary	3,398.10'	71.0' long x 1.0' breadth Broad-Crested Rectangular Weir								
			Head (feet) 0.20 0.40 0.60 0.80 1.00 1.20 1.40 1.60 1.80 2.00								
			2.50 3.00								
			Coef. (English) 2.69 2.72 2.75 2.85 2.98 3.08 3.20 3.28 3.31								
			3.30 3.31 3.32								
#2	Primary	3,392.02'	9.0" W x 12.0" H Vert. Orifice/Grate C= 0.600								

Primary OutFlow Max=9.46 cfs @ 12.10 hrs HW=3,399.38' (Free Discharge)
 ↗ 2=Orifice/Grate (Orifice Controls 9.46 cfs @ 12.61 fps)

Secondary OutFlow Max=322.42 cfs @ 12.10 hrs HW=3,399.38' (Free Discharge)
 ↗ 1=Broad-Crested Rectangular Weir (Weir Controls 322.42 cfs @ 3.54 fps)

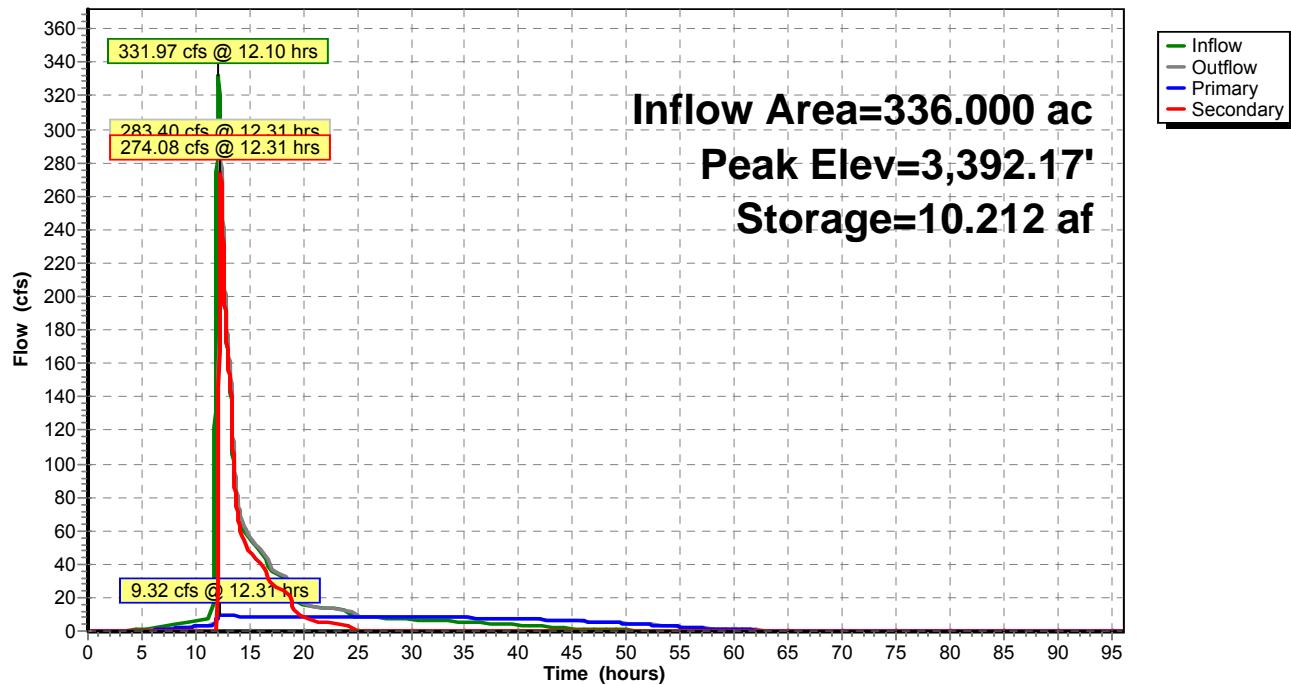
Pond Pond A: Pond A**Hydrograph**

Summary for Pond Pond B: Pond B

[79] Warning: Submerged Pond Pond A Primary device # 2 by 0.15'

Inflow Area = 336.000 ac, 52.98% Impervious, Inflow Depth = 2.51" for May 2011 event
 Inflow = 331.97 cfs @ 12.10 hrs, Volume= 70.261 af
 Outflow = 283.40 cfs @ 12.31 hrs, Volume= 70.241 af, Atten= 15%, Lag= 12.5 min
 Primary = 9.32 cfs @ 12.31 hrs, Volume= 28.081 af
 Secondary = 274.08 cfs @ 12.31 hrs, Volume= 42.159 af

Routing by Stor-Ind method, Time Span= 0.00-96.00 hrs, dt= 0.01 hrs
 Peak Elev= 3,392.17' @ 12.31 hrs Surf.Area= 1.827 ac Storage= 10.212 af
 Flood Elev= 3,393.58' Surf.Area= 1.960 ac Storage= 12.890 af


Plug-Flow detention time= 238.6 min calculated for 70.233 af (100% of inflow)
 Center-of-Mass det. time= 237.4 min (1,272.0 - 1,034.6)

Volume	Invert	Avail.Storage	Storage Description		
#1	3,385.00'	12.890 af	Custom Stage Data (Irregular)	Listed below (Recalc)	
Elevation (feet)	Surf.Area (acres)	Perim. (feet)	Inc.Store (acre-feet)	Cum.Store (acre-feet)	Wet.Area (acres)
3,385.00	0.450	906.0	0.000	0.000	0.450
3,386.00	1.160	1,554.0	0.777	0.777	3.362
3,387.00	1.340	1,542.0	1.249	2.026	3.439
3,388.00	1.440	1,585.0	1.390	3.416	3.687
3,389.00	1.530	1,614.0	1.485	4.901	3.861
3,390.00	1.620	1,644.0	1.575	6.476	4.043
3,391.00	1.720	1,671.0	1.670	8.145	4.211
3,392.00	1.810	1,701.0	1.765	9.910	4.400
3,392.50	1.860	1,718.0	0.917	10.828	4.508
3,393.58	1.960	1,752.0	2.063	12.890	4.727

Device	Routing	Invert	Outlet Devices								
#1	Secondary	3,391.00'	71.0' long x 1.0' breadth Broad-Crested Rectangular Weir								
			Head (feet)	0.20	0.40	0.60	0.80	1.00	1.20	1.40	1.60
			2.50	3.00							
			Coef. (English)	2.69	2.72	2.75	2.85	2.98	3.08	3.20	3.28
			3.30	3.31	3.32						
#2	Primary	3,385.00'	9.0" W x 12.0" H Vert. Orifice/Grate	C= 0.600							

Primary OutFlow Max=9.32 cfs @ 12.31 hrs HW=3,392.17' (Free Discharge)
 ↗ 2=Orifice/Grate (Orifice Controls 9.32 cfs @ 12.43 fps)

Secondary OutFlow Max=273.77 cfs @ 12.31 hrs HW=3,392.17' (Free Discharge)
 ↗ 1=Broad-Crested Rectangular Weir (Weir Controls 273.77 cfs @ 3.31 fps)

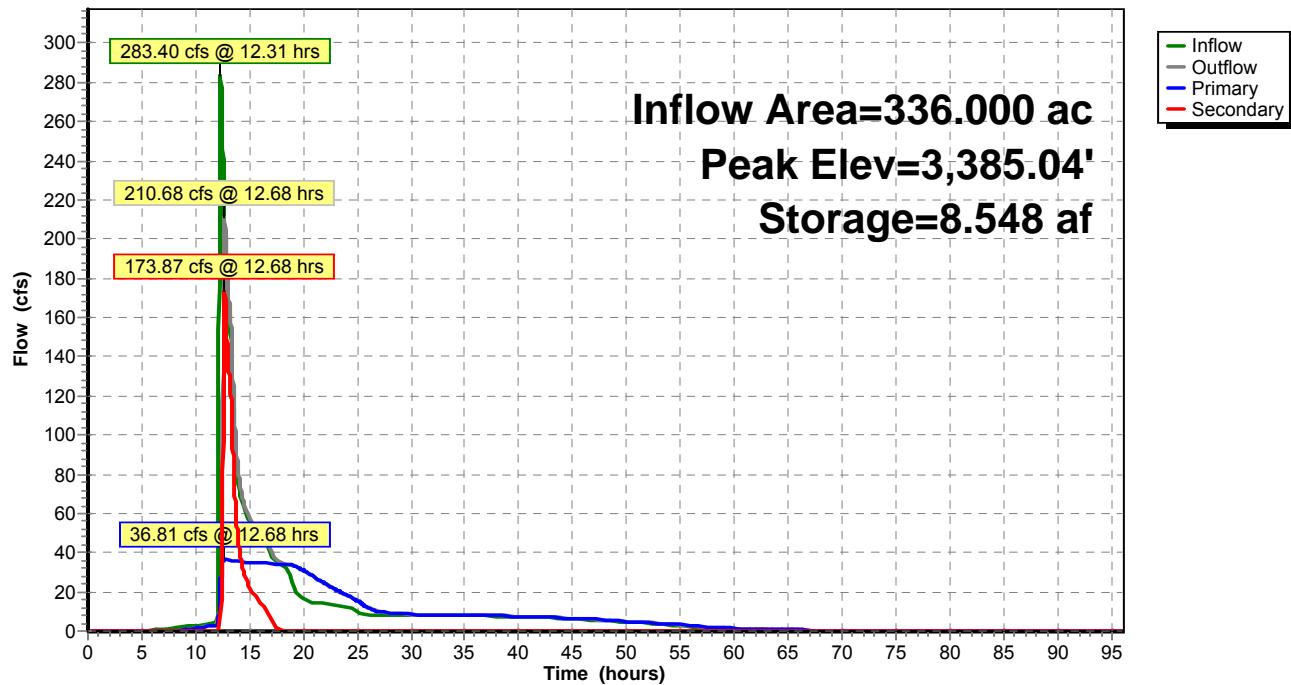
Pond Pond B: Pond B**Hydrograph**

Summary for Pond Pond C: Pond C

[79] Warning: Submerged Pond Pond B Primary device # 2 by 0.04'

Inflow Area = 336.000 ac, 52.98% Impervious, Inflow Depth > 2.51" for May 2011 event
 Inflow = 283.40 cfs @ 12.31 hrs, Volume= 70.241 af
 Outflow = 210.68 cfs @ 12.68 hrs, Volume= 70.165 af, Atten= 26%, Lag= 22.2 min
 Primary = 36.81 cfs @ 12.68 hrs, Volume= 51.534 af
 Secondary = 173.87 cfs @ 12.68 hrs, Volume= 18.632 af

Routing by Stor-Ind method, Time Span= 0.00-96.00 hrs, dt= 0.01 hrs
 Peak Elev= 3,385.04' @ 12.68 hrs Surf.Area= 1.605 ac Storage= 8.548 af
 Flood Elev= 3,386.61' Surf.Area= 1.770 ac Storage= 11.199 af


Plug-Flow detention time= 99.1 min calculated for 70.158 af (100% of inflow)
 Center-of-Mass det. time= 95.1 min (1,367.1 - 1,272.0)

Volume	Invert	Avail.Storage	Storage Description		
#1	3,378.12'	11.199 af	Custom Stage Data (Irregular)	Listed below (Recalc)	
Elevation (feet)	Surf.Area (acres)	Perim. (feet)	Inc.Store (acre-feet)	Cum.Store (acre-feet)	Wet.Area (acres)
3,378.12	0.880	1,462.0	0.000	0.000	0.880
3,379.00	0.880	1,462.0	0.774	0.774	0.910
3,380.00	1.080	1,574.0	0.978	1.753	1.532
3,381.00	1.190	1,649.0	1.135	2.887	1.975
3,382.00	1.300	1,687.0	1.245	4.132	2.210
3,383.00	1.400	1,720.0	1.350	5.482	2.419
3,384.00	1.500	1,752.0	1.450	6.931	2.626
3,385.00	1.600	1,765.0	1.550	8.481	2.718
3,385.50	1.660	1,780.0	0.815	9.296	2.818
3,386.61	1.770	1,815.0	1.903	11.199	3.052

Device	Routing	Invert	Outlet Devices								
#1	Secondary	3,384.20'	72.3' long x 0.7' breadth Broad-Crested Rectangular Weir								
			Head (feet) 0.20 0.40 0.60 0.80 1.00 1.20 1.40 1.60 1.80 2.00								
			2.50								
			Coef. (English) 2.76 2.82 2.93 3.09 3.18 3.22 3.27 3.30 3.32								
			3.31 3.32								
#2	Primary	3,378.12'	24.0" Round Culvert								
			L= 464.0' RCP, square edge headwall, Ke= 0.500								
			Inlet / Outlet Invert= 3,378.12' / 3,362.61' S= 0.0334 '/' Cc= 0.900								
			n= 0.012 Concrete pipe, finished, Flow Area= 3.14 sf								

Primary OutFlow Max=36.81 cfs @ 12.68 hrs HW=3,385.04' (Free Discharge)
 ↑ 2=Culvert (Inlet Controls 36.81 cfs @ 11.72 fps)

Secondary OutFlow Max=173.62 cfs @ 12.68 hrs HW=3,385.04' (Free Discharge)
 ↑ 1=Broad-Crested Rectangular Weir (Weir Controls 173.62 cfs @ 2.85 fps)

Pond Pond C: Pond C**Hydrograph**

Summary for Pond Pond D: Pond D

Inflow Area = 23.000 ac, 4.35% Impervious, Inflow Depth = 1.99" for May 2011 event
 Inflow = 48.90 cfs @ 12.14 hrs, Volume= 3.819 af
 Outflow = 19.46 cfs @ 12.43 hrs, Volume= 3.819 af, Atten= 60%, Lag= 17.0 min
 Primary = 4.09 cfs @ 12.43 hrs, Volume= 3.214 af
 Secondary = 15.37 cfs @ 12.43 hrs, Volume= 0.605 af

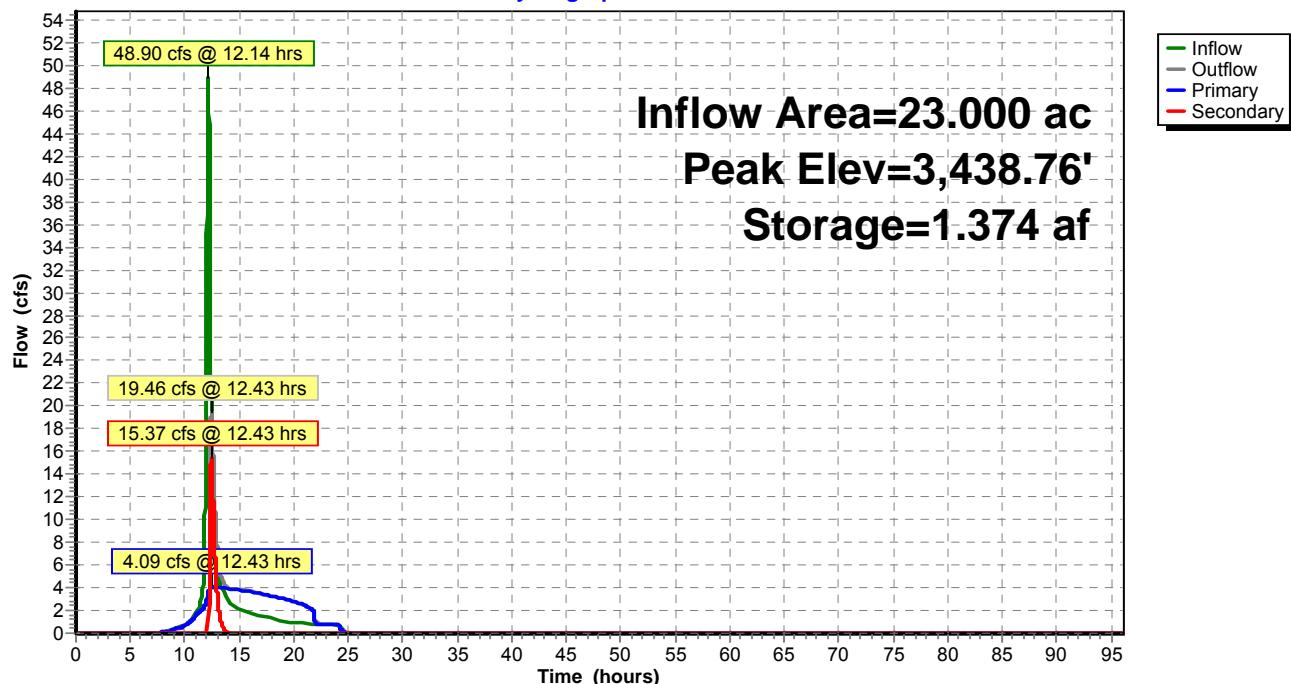
Routing by Stor-Ind method, Time Span= 0.00-96.00 hrs, dt= 0.01 hrs
 Peak Elev= 3,438.76' @ 12.43 hrs Surf.Area= 0.430 ac Storage= 1.374 af
 Flood Elev= 3,443.00' Surf.Area= 0.850 ac Storage= 3.671 af

Plug-Flow detention time= 109.7 min calculated for 3.819 af (100% of inflow)
 Center-of-Mass det. time= 109.7 min (941.2 - 831.5)

Volume	Invert	Avail.Storage	Storage Description		
#1	3,433.00'	3.671 af	Custom Stage Data (Irregular)	Listed below (Recalc)	
Elevation (feet)	Surf.Area (acres)	Perim. (feet)	Inc.Store (acre-feet)	Cum.Store (acre-feet)	Wet.Area (acres)
3,433.00	0.000	0.0	0.000	0.000	0.000
3,433.50	0.001	44.0	0.000	0.000	0.004
3,434.00	0.020	127.0	0.004	0.004	0.029
3,434.50	0.090	260.0	0.025	0.030	0.124
3,435.00	0.170	370.0	0.064	0.094	0.250
3,435.50	0.260	434.0	0.107	0.200	0.344
3,436.00	0.310	481.0	0.142	0.343	0.423
3,436.50	0.340	529.0	0.162	0.505	0.512
3,437.00	0.360	540.0	0.175	0.680	0.534
3,437.50	0.380	556.0	0.185	0.865	0.567
3,438.00	0.400	585.0	0.195	1.060	0.628
3,438.50	0.420	590.0	0.205	1.265	0.640
3,439.00	0.440	598.0	0.215	1.480	0.659
3,439.50	0.460	613.0	0.225	1.705	0.693
3,440.00	0.480	639.0	0.235	1.940	0.753
3,440.50	0.510	666.0	0.247	2.188	0.818
3,441.00	0.530	694.0	0.260	2.448	0.888
3,441.50	0.550	721.0	0.270	2.718	0.958
3,442.00	0.580	755.0	0.282	3.000	1.050
3,442.50	0.630	806.0	0.302	3.302	1.196
3,443.00	0.850	826.0	0.369	3.671	1.256

Device	Routing	Invert	Outlet Devices	
#1	Primary	3,433.00'	10.0" Round Culvert	
			L= 128.0' RCP, sq.cut end projecting, Ke= 0.500	
			Inlet / Outlet Invert= 3,433.00' / 3,432.13' S= 0.0068 '/' Cc= 0.900	
			n= 0.013 Cast iron, coated, Flow Area= 0.55 sf	
#2	Secondary	3,438.31'	60.0" Horiz. Orifice/Grate C= 0.600	
			Limited to weir flow at low heads	

Primary OutFlow Max=4.09 cfs @ 12.43 hrs HW=3,438.76' (Free Discharge)


↑
1=Culvert (Barrel Controls 4.09 cfs @ 7.50 fps)

Secondary OutFlow Max=15.29 cfs @ 12.43 hrs HW=3,438.76' (Free Discharge)

↑
2=Orifice/Grate (Weir Controls 15.29 cfs @ 2.18 fps)

Pond Pond D: Pond D

Hydrograph

Summary for Pond Pond E: Pond E

[58] Hint: Peaked 0.95' above defined flood level

[81] Warning: Exceeded Pond 404 by 3.17' @ 14.39 hrs

Inflow Area = 255.000 ac, 25.49% Impervious, Inflow Depth = 2.26" for May 2011 event

Inflow = 395.17 cfs @ 12.31 hrs, Volume= 47.937 af

Outflow = 240.48 cfs @ 12.60 hrs, Volume= 47.937 af, Atten= 39%, Lag= 17.4 min

Primary = 45.14 cfs @ 12.60 hrs, Volume= 36.544 af

Secondary = 195.35 cfs @ 12.60 hrs, Volume= 11.393 af

Routing by Stor-Ind method, Time Span= 0.00-96.00 hrs, dt= 0.01 hrs

Peak Elev= 3,546.60' @ 12.60 hrs Surf.Area= 2.022 ac Storage= 14.040 af

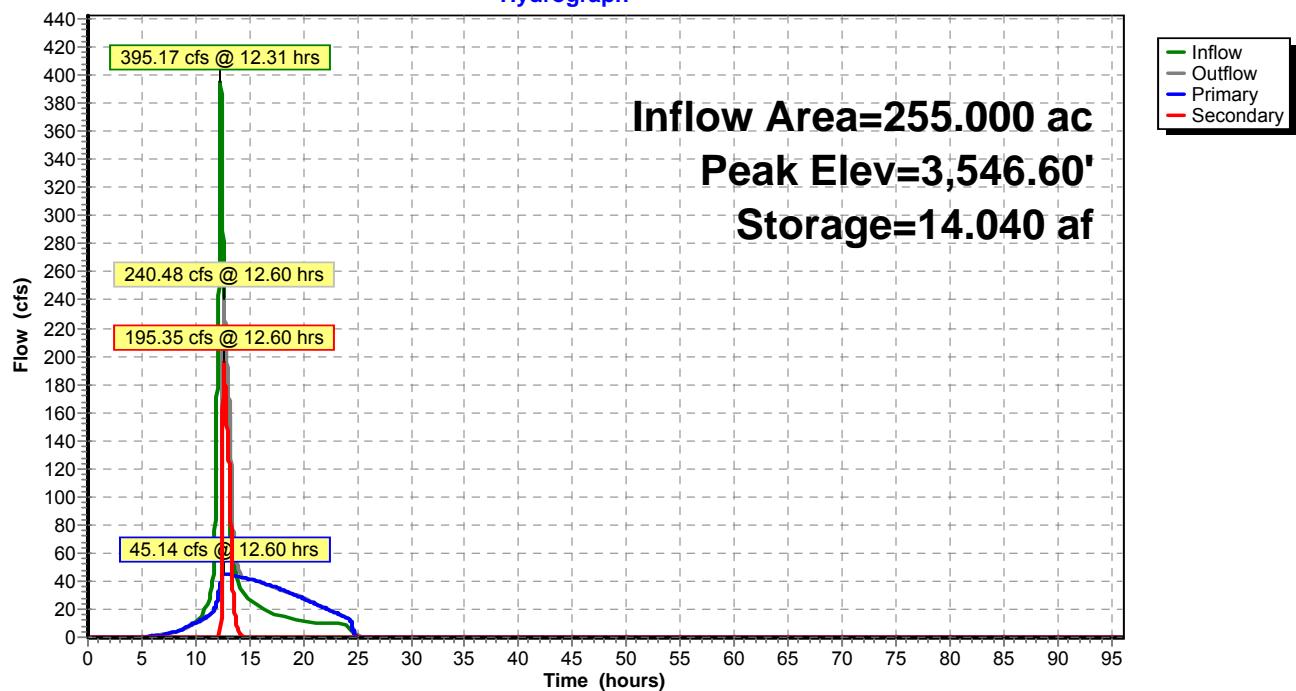
Flood Elev= 3,545.65' Surf.Area= 1.951 ac Storage= 12.146 af

Plug-Flow detention time= 102.6 min calculated for 47.932 af (100% of inflow)

Center-of-Mass det. time= 102.6 min (935.2 - 832.6)

Volume	Invert	Avail.Storage	Storage Description		
#1	3,536.70'	15.883 af	Custom Stage Data (Irregular)	Listed below (Recalc)	
Elevation (feet)	Surf.Area (acres)	Perim. (feet)	Inc.Store (acre-feet)	Cum.Store (acre-feet)	Wet.Area (acres)
3,536.70	0.000	0.0	0.000	0.000	0.000
3,537.50	0.020	12.0	0.005	0.005	0.000
3,538.00	0.060	271.0	0.019	0.024	0.134
3,538.50	0.900	814.0	0.199	0.223	1.211
3,539.00	1.350	996.0	0.559	0.782	1.812
3,539.50	1.490	1,032.0	0.710	1.492	1.946
3,540.00	1.560	1,070.0	0.762	2.254	2.093
3,540.50	1.590	1,083.0	0.787	3.042	2.145
3,541.00	1.620	1,098.0	0.802	3.844	2.206
3,541.50	1.660	1,111.0	0.820	4.664	2.260
3,542.00	1.690	1,122.0	0.837	5.501	2.307
3,542.50	1.730	1,134.0	0.855	6.356	2.358
3,543.00	1.760	1,146.0	0.872	7.229	2.410
3,543.50	1.800	1,158.0	0.890	8.119	2.462
3,544.00	1.830	1,169.0	0.907	9.026	2.511
3,544.50	1.870	1,180.0	0.925	9.951	2.560
3,545.00	1.900	1,191.0	0.942	10.894	2.609
3,545.50	1.940	1,202.0	0.960	11.854	2.659
3,547.50	2.090	1,244.0	4.029	15.883	2.855

Device	Routing	Invert	Outlet Devices
#1	Primary	3,536.70'	24.0" Round Culvert L= 177.0' RCP, square edge headwall, Ke= 0.500 Inlet / Outlet Invert= 3,536.70' / 3,526.41' S= 0.0581 '/' Cc= 0.900 n= 0.012 Concrete pipe, finished, Flow Area= 3.14 sf
#2	Secondary	3,545.65'	71.0' long x 1.0' breadth Broad-Crested Rectangular Weir Head (feet) 0.20 0.40 0.60 0.80 1.00 1.20 1.40 1.60 1.80 2.00 2.50 3.00


Coef. (English)	2.69	2.72	2.75	2.85	2.98	3.08	3.20	3.28	3.31
	3.30	3.31	3.32						

Primary OutFlow Max=45.14 cfs @ 12.60 hrs HW=3,546.60' (Free Discharge)
 ↗1=Culvert (Inlet Controls 45.14 cfs @ 14.37 fps)

Secondary OutFlow Max=194.98 cfs @ 12.60 hrs HW=3,546.60' (Free Discharge)
 ↗2=Broad-Crested Rectangular Weir (Weir Controls 194.98 cfs @ 2.88 fps)

Pond Pond E: Pond E

Hydrograph

APPENDIX H

Stormwater Pipe Capacity Tables

Appendix H

Billings Logan International Airport

Stormwater Pipe Network

Existing Pipe Capacity Tables

Pipe No.	Diameter (in)	Area (ft ²)	Wetted Perimeter	Hydraulic Radius (ft ²)	Manning's n-value	Slope (ft/ft)	Velocity (ft/s)	Full Capacity (cfs)	5yr, 24 hr Peak Inflow (cfs)
101	36	7.1	9.4	0.8	0.012	0.093	31.2	220.6	7.7
102	36	7.1	9.4	0.8	0.012	0.009	9.4	66.8	7.7
103	36	7.1	9.4	0.8	0.012	0.027	17.0	119.9	7.7
104	36	7.1	9.4	0.8	0.012	0.047	22.1	156.4	7.7
105	24	3.1	6.3	0.5	0.012	0.177	32.9	103.4	7.7
106	24	3.1	6.3	0.5	0.012	0.026	12.6	39.5	7.7
107	60	19.6	15.7	1.3	0.012	0.020	20.1	395.1	195.6
108	54	15.9	14.1	1.1	0.012	0.035	25.2	400.8	195.6
109	60	19.6	15.7	1.3	0.012	0.029	24.4	478.4	186.7
110	66	23.8	17.3	1.4	0.012	0.027	25.3	600.5	186.7
111	60	19.6	15.7	1.3	0.012	0.025	22.6	443.7	174.9
112	60	19.6	15.7	1.3	0.012	0.040	29.0	568.6	174.9
113	60	19.6	15.7	1.3	0.012	0.010	14.4	282.9	84.2
114	60	19.6	15.7	1.3	0.012	0.010	14.5	284.3	84.2
115	54	15.9	14.1	1.1	0.012	0.014	15.9	253.6	84.2
116	60	19.6	15.7	1.3	0.012	0.009	13.5	265.4	84.2
117	42	9.6	11.0	0.9	0.012	0.009	10.7	103.1	50.2
118	42	9.6	11.0	0.9	0.012	0.006	8.4	81.0	50.2
119	42	9.6	11.0	0.9	0.012	0.007	9.4	90.8	50.2
120	42	9.6	11.0	0.9	0.012	0.007	9.4	90.8	50.2
121	42	9.6	11.0	0.9	0.012	0.013	13.1	126.5	50.2
122	42	9.6	11.0	0.9	0.012	0.011	11.9	114.6	50.2
123	42	9.6	11.0	0.9	0.012	0.011	12.0	115.1	50.2
124	24	3.1	6.3	0.5	0.012	0.004	4.7	14.7	6.4
125	30	4.9	7.9	0.6	0.012	0.024	13.9	68.3	9.1
126	30	4.9	7.9	0.6	0.012	0.010	9.1	44.6	9.1
127	30	4.9	7.9	0.6	0.012	0.010	9.1	44.6	9.1
128	30	4.9	7.9	0.6	0.012	0.050	20.3	99.6	14.0
129	30	4.9	7.9	0.6	0.012	0.008	7.9	38.6	14.0
130	30	4.9	7.9	0.6	0.012	0.001	2.2	10.9	14.0
131	30	4.9	7.9	0.6	0.012	0.019	12.4	61.1	14.0
132	24	3.1	6.3	0.5	0.025	0.013	4.2	13.3	20.7
133	18	1.8	4.7	0.4	0.012	0.006	4.8	8.5	7.9
134	18	1.8	4.7	0.4	0.012	0.003	3.4	5.9	10.5
135	36	7.1	9.4	0.8	0.025	0.046	10.6	74.7	97.1
138	36	7.1	9.4	0.8	0.012	0.026	16.6	117.0	97.1
139	18	1.8	4.7	0.4	0.012	0.011	6.7	11.8	10.5
140	42	9.6	11.0	0.9	0.012	0.018	15.1	145.0	88.4
141	42	9.6	11.0	0.9	0.012	0.019	15.6	149.8	109.2
142	42	9.6	11.0	0.9	0.012	0.019	15.6	149.8	52.6

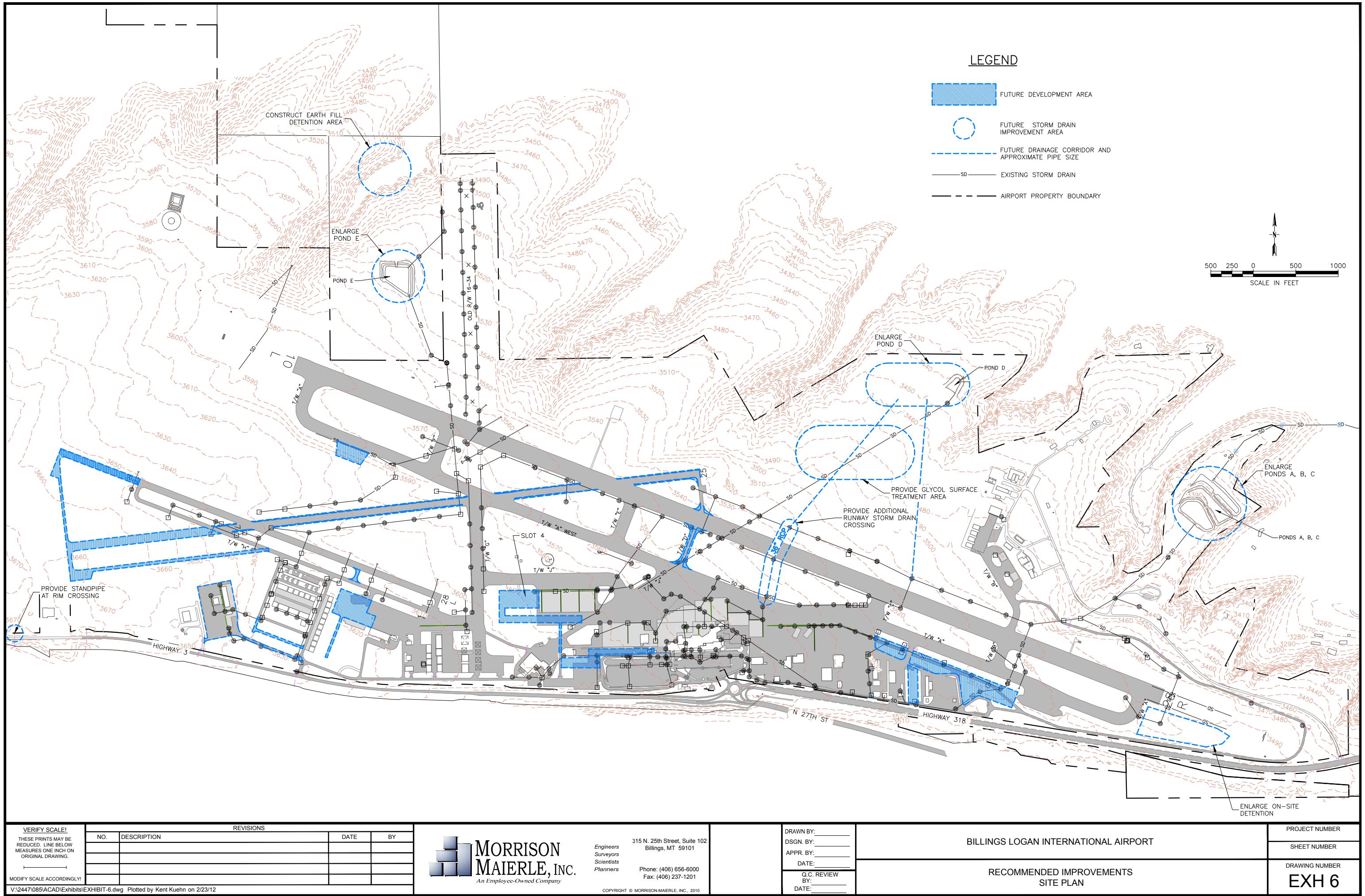
Pipe No.	Diameter (in)	Area (ft ²)	Wetted Perimeter	Hydraulic Radius (ft ²)	Manning's n-value	Slope (ft/ft)	Velocity (ft/s)	Full Capacity (cfs)	5yr, 24 hr Peak Inflow (cfs)
143	42	9.6	11.0	0.9	0.012	0.028	19.0	183.2	52.6
144	42	9.6	11.0	0.9	0.012	0.010	11.4	109.8	52.6
145	42	9.6	11.0	0.9	0.012	0.013	12.9	123.6	52.6
146	42	9.6	11.0	0.9	0.012	0.009	11.0	106.0	47.7
147	42	9.6	11.0	0.9	0.012	0.025	18.1	173.8	47.7
148	42	9.6	11.0	0.9	0.012	0.013	13.0	124.6	47.7
149	42	9.6	11.0	0.9	0.012	0.085	33.1	318.8	47.7
150	42	9.6	11.0	0.9	0.012	0.008	9.8	94.6	47.7
151	42	9.6	11.0	0.9	0.012	0.007	9.7	93.4	47.7
152	42	9.6	11.0	0.9	0.012	0.004	7.0	67.4	47.7
153	42	9.6	11.0	0.9	0.012	0.004	7.2	69.1	47.7
200	36	7.1	9.4	0.8	0.012	0.007	8.8	61.9	41.7
201	36	7.1	9.4	0.8	0.012	0.011	10.7	75.3	41.7
202	36	7.1	9.4	0.8	0.012	0.015	12.3	87.2	41.7
203	36	7.1	9.4	0.8	0.012	0.018	13.8	97.7	41.7
204	24	3.1	6.3	0.5	0.012	0.011	8.2	25.9	18.6
207	15	1.2	3.9	0.3	0.01	0.005	4.8	5.8	15.3
208	36	7.1	9.4	0.8	0.012	0.011	10.8	76.3	23.2
209	24	3.1	6.3	0.5	0.012	0.023	11.9	37.5	23.2
210	24	3.1	6.3	0.5	0.012	0.014	9.3	29.1	23.2
211	24	3.1	6.3	0.5	0.012	0.015	9.7	30.4	23.2
212	24	3.1	6.3	0.5	0.012	0.020	11.0	34.6	23.2
213	24	3.1	6.3	0.5	0.012	0.020	11.1	34.9	23.2
214	24	3.1	6.3	0.5	0.012	0.019	10.9	34.2	23.2
300	48	12.6	12.6	1.0	0.012	0.011	12.7	159.9	0.0
311	36	7.1	9.4	0.8	0.025	0.021	7.2	50.9	45.0
312	36	7.1	9.4	0.8	0.025	0.013	5.6	39.5	45.0
313	36	7.1	9.4	0.8	0.025	0.015	6.1	42.9	28.1
314	30	4.9	7.9	0.6	0.025	0.009	4.2	20.7	20.1
315	30	4.9	7.9	0.6	0.025	0.009	4.0	19.7	11.2
316	24	3.1	6.3	0.5	0.025	0.007	3.2	10.1	11.2
327	18	1.8	4.7	0.4	0.012	0.010	6.6	11.6	8.2
328	18	1.8	4.7	0.4	0.012	0.010	6.6	11.6	8.2
330	18	1.8	4.7	0.4	0.025	0.010	3.1	5.6	8.2
331	18	1.8	4.7	0.4	0.012	0.013	7.4	13.2	8.2
333	12	0.8	3.1	0.3	0.012	0.016	6.3	5.0	8.2
337	12	0.8	3.1	0.3	0.012	0.042	10.1	7.9	5.4
350	18	1.8	4.7	0.4	0.012	0.016	8.3	14.6	8.2
351	12	0.8	3.1	0.3	0.012	0.033	9.0	7.0	24.6
356	36	7.1	9.4	0.8	0.025	0.033	8.9	63.0	40.3
357	36	7.1	9.4	0.8	0.025	0.011	5.1	36.3	40.8
362	18	1.8	4.7	0.4	0.012	0.021	9.3	16.5	16.3
365	18	1.8	4.7	0.4	0.012	0.022	9.6	17.0	16.3
366	18	1.8	4.7	0.4	0.012	0.021	9.2	16.3	16.3

Pipe No.	Diameter (in)	Area (ft ²)	Wetted Perimeter	Hydraulic Radius (ft ²)	Manning's n-value	Slope (ft/ft)	Velocity (ft/s)	Full Capacity (cfs)	5yr, 24 hr Peak Inflow (cfs)
367	18	1.8	4.7	0.4	0.012	0.020	9.2	16.2	16.3
368	18	1.8	4.7	0.4	0.012	0.020	9.2	16.3	16.3
369	18	1.8	4.7	0.4	0.012	0.023	9.7	17.2	16.3
370	18	1.8	4.7	0.4	0.012	0.009	6.1	10.7	11.1
371	18	1.8	4.7	0.4	0.012	0.009	6.0	10.6	11.1
372	18	1.8	4.7	0.4	0.012	0.033	11.7	20.7	11.1
373	15	1.2	3.9	0.3	0.012	0.004	3.6	4.4	28.2
374	15	1.2	3.9	0.3	0.012	0.024	8.8	10.8	4.5
375	12	0.8	3.1	0.3	0.012	0.011	5.3	4.1	6.0
376	12	0.8	3.1	0.3	0.012	0.012	5.3	4.2	4.4
377	12	0.8	3.1	0.3	0.012	0.008	4.3	3.4	4.4
378	18	1.8	4.7	0.4	0.012	0.033	11.7	20.7	5.6
379	12	0.8	3.1	0.3	0.012	0.006	3.8	3.0	16.2
381	12	0.8	3.1	0.3	0.012	0.019	6.8	5.3	27.9
382	12	0.8	3.1	0.3	0.012	0.018	6.6	5.1	7.7
383	12	0.8	3.1	0.3	0.012	0.021	7.1	5.6	6.4
384	12	0.8	3.1	0.3	0.012	0.006	3.9	3.1	6.4
385	12	0.8	3.1	0.3	0.012	0.006	3.9	3.1	4.5
386	12	0.8	3.1	0.3	0.025	0.002	1.1	0.9	4.5
400	36	7.1	9.4	0.8	0.012	0.004	6.1	43.5	22.3
401	24	3.1	6.3	0.5	0.012	0.030	13.6	42.6	22.3
402	24	3.1	6.3	0.5	0.012	0.040	15.7	49.3	22.3
404	60	19.6	15.7	1.3	0.012	0.003	7.2	141.5	58.7
405	60	19.6	15.7	1.3	0.012	0.005	10.3	202.0	58.7
406	54	15.9	14.1	1.1	0.012	0.014	16.0	254.5	58.7
407	24	3.1	6.3	0.5	0.012	0.006	6.2	19.3	7.4
408	54	15.9	14.1	1.1	0.012	0.014	15.8	250.9	58.7
409	42	9.6	11.0	0.9	0.012	0.024	17.7	170.0	45.4
410	42	9.6	11.0	0.9	0.012	0.024	17.5	168.6	40.0
411	24	3.1	6.3	0.5	0.012	0.027	12.8	40.3	3.5
412	42	9.6	11.0	0.9	0.012	0.019	15.8	151.8	36.9
413	36	7.1	9.4	0.8	0.012	0.019	14.0	99.1	15.8
414	36	7.1	9.4	0.8	0.012	0.019	14.0	99.1	15.8
415	36	7.1	9.4	0.8	0.012	0.019	14.0	99.1	15.8
416	36	7.1	9.4	0.8	0.012	0.017	13.5	95.3	15.8
417	36	7.1	9.4	0.8	0.012	0.019	14.1	99.9	15.8
418	36	7.1	9.4	0.8	0.012	0.018	13.8	97.2	15.8
419	36	7.1	9.4	0.8	0.012	0.020	14.5	102.7	6.0
420	36	7.1	9.4	0.8	0.012	0.007	8.7	61.5	6.0
421	21	2.4	5.5	0.4	0.012	0.011	7.5	18.0	1.7
426	27	4.0	7.1	0.6	0.012	0.015	10.5	41.6	1.3
427	21	2.4	5.5	0.4	0.012	0.010	7.2	17.2	0.6
429	21	2.4	5.5	0.4	0.012	0.014	8.5	20.4	0.7
430	21	2.4	5.5	0.4	0.012	0.010	7.2	17.2	0.7

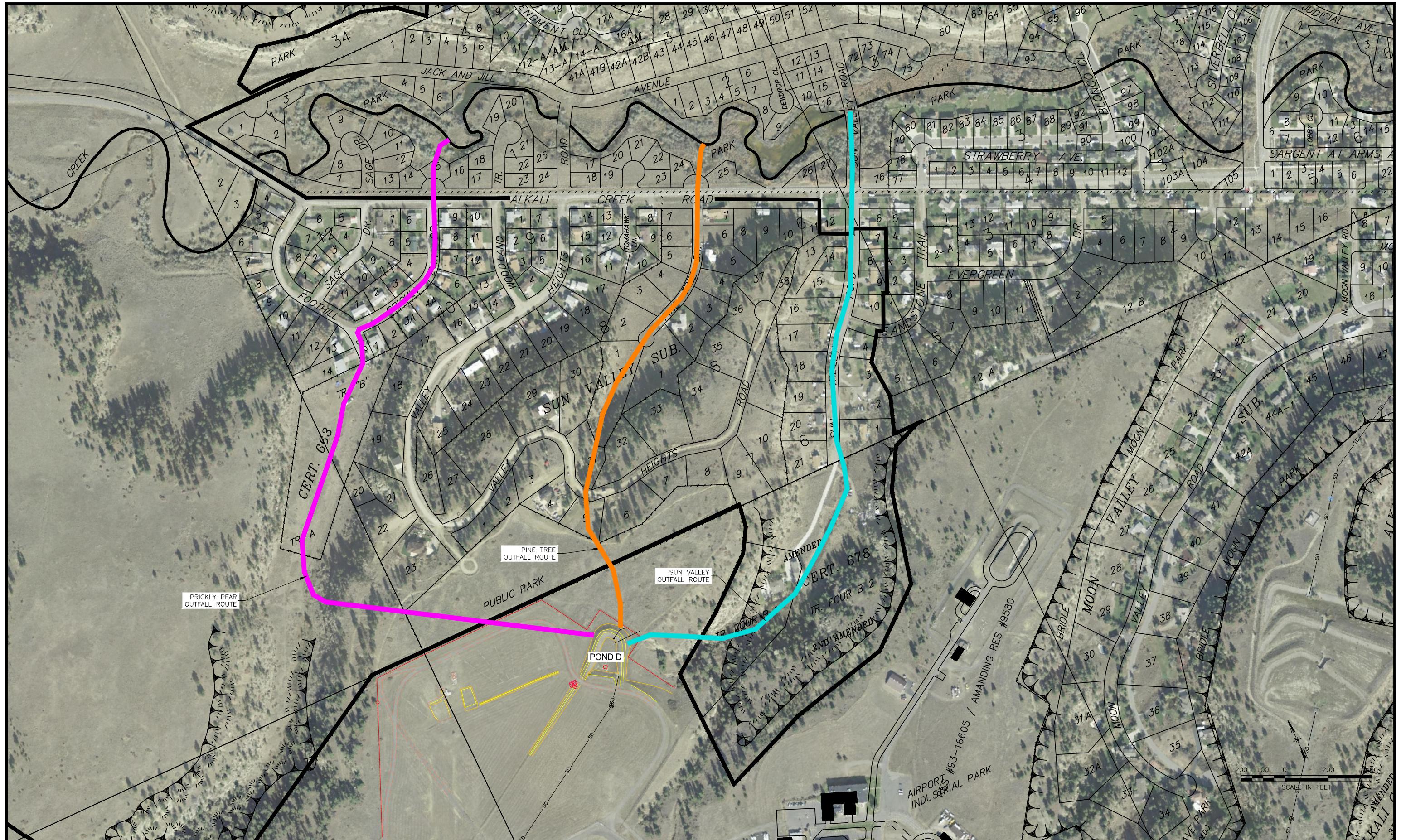
Pipe No.	Diameter (in)	Area (ft ²)	Wetted Perimeter	Hydraulic Radius (ft ²)	Manning's n-value	Slope (ft/ft)	Velocity (ft/s)	Full Capacity (cfs)	5yr, 24 hr Peak Inflow (cfs)
433	21	2.4	5.5	0.4	0.012	0.023	10.9	26.2	11.6
434	21	2.4	5.5	0.4	0.012	0.003	4.1	9.9	11.4
435	21	2.4	5.5	0.4	0.012	0.006	5.7	13.8	11.4
436	21	2.4	5.5	0.4	0.012	0.010	7.1	17.0	11.4
449	21	2.4	5.5	0.4	0.012	0.010	7.2	17.2	14.9
450	21	2.4	5.5	0.4	0.012	0.012	7.9	19.1	14.9
451	21	2.4	5.5	0.4	0.012	0.005	5.1	12.2	14.9
452	24	3.1	6.3	0.5	0.012	0.003	3.9	12.3	2.9
453	21	2.4	5.5	0.4	0.012	0.011	7.5	18.1	1.9
455	18	1.8	4.7	0.4	0.012	0.010	6.6	11.6	7.6
456	21	2.4	5.5	0.4	0.012	0.015	8.7	20.9	7.6
457	24	3.1	6.3	0.5	0.012	0.002	3.8	11.8	8.6
459	48	12.6	12.6	1.0	0.012	0.012	13.6	170.9	5.5
460	48	12.6	12.6	1.0	0.012	0.014	14.6	184.0	5.5
462	24	3.1	6.3	0.5	0.012	0.116	26.6	83.7	5.5
701	48	12.6	12.6	1.0	0.012	0.087	36.6	460.2	8.0
702	42	9.6	11.0	0.9	0.012	0.087	33.6	323.1	8.0
703	36	7.1	9.4	0.8	0.012	0.087	30.3	214.2	8.0
704	78	33.2	20.4	1.6	0.012	0.020	24.3	805.4	8.0
Pond C	24	3.1	6.3	0.5	0.012	0.033	14.3	44.9	7.7
Pond D	10	0.5	2.6	0.2	0.013	0.007	3.3	1.8	3.3
Pond E	24	3.1	6.3	0.5	0.012	0.058	18.9	59.2	60.0

Note: Full Capacity based on Mannings Equation: $Q=(1.49/n)AR_h^{2/3}S^{1/2}$

All pipes are assumed at 100% capacity, with unsubmerged inlet and outlet


Assumed n-value of 0.012 is for a finished concrete pipe

Assumed n-value of 0.025 is for a corrugated metal pipe


APPENDIX I

Recommended Improvements

Appendix I

VERIFY SCALE!
THESE PRINTS MAY BE
REDUCED. LINE BELOW
MEASURES ONE INCH ON
ORIGINAL DRAWING.

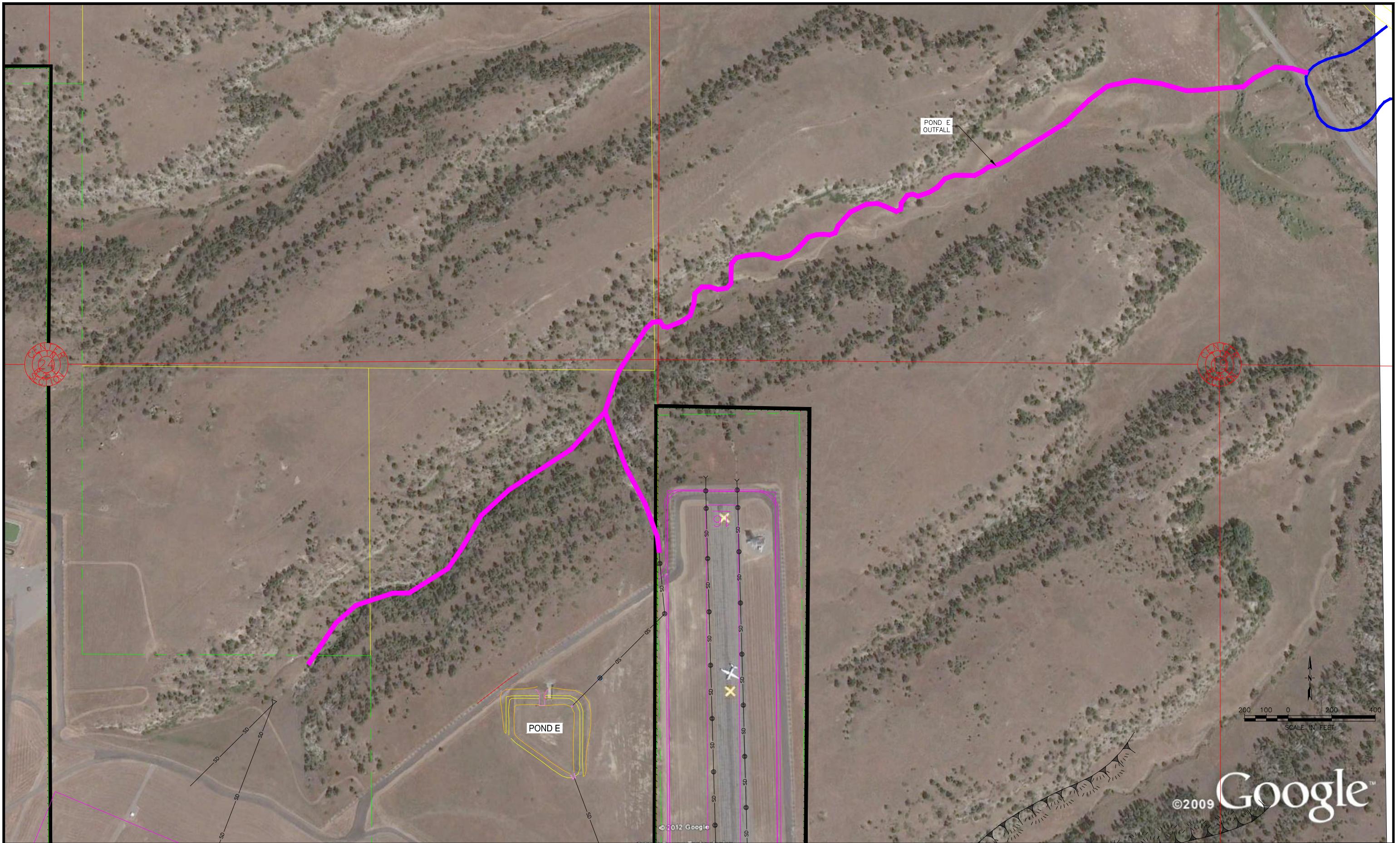
MODIFY SCALE ACCORDINGLY!

REVISIONS

NO.	DESCRIPTION	DATE	BY

**MORRISON
MAIERLE, INC.**
An Employee-Owned Company

Engineers
Surveyors
Scientists
Planners
315 N. 25th Street, Suite 102
Billings, MT 59101
Phone: (406) 656-6000
Fax: (406) 237-1201
COPYRIGHT © MORRISON-MAIERLE, INC., 2012


DRAWN BY: _____
DSGN. BY: _____
APPR. BY: _____
DATE: _____
Q.C. REVIEW
BY: _____
DATE: _____

BILLINGS LOGAN INTERNATIONAL AIRPORT

MONTANA

POND "D" OUTFALL ROUTE OPTIONS

PROJECT NUMBER
SHEET NUMBER
DRAWING NUMBER
EXH 8

VERIFY SCALE!
THESE PRINTS MAY BE
REDUCED. LINE BELOW
MEASURES ONE INCH ON
ORIGINAL DRAWING.
MODIFY SCALE ACCORDINGLY!

REVISIONS

NO.	DESCRIPTION	DATE	BY

**MORRISON
MAIERLE, INC.**
An Employee-Owned Company

Engineers
Surveyors
Scientists
Planners

315 N. 25th Street, Suite 102
Billings, MT 59101
Phone: (406) 656-6000
Fax: (406) 237-1201

COPYRIGHT © MORRISON-MAIERLE, INC., 2012

DRAWN BY: _____
DSGN. BY: _____
APPR. BY: _____
DATE: _____
Q.C. REVIEW
BY: _____
DATE: _____

PROJECT NUMBER _____
SHEET NUMBER _____
DRAWING NUMBER _____
EXH 9

BILLINGS LOGAN INTERNATIONAL AIRPORT

MONTANA

POND "E" OUTFALL ROUTE OPTIONS

APPENDIX J

Cost Estimates for Recommended Improvements

ESTIMATED PROJECT COST

Project:	2012 Storm Drain Master Plan	Estimated Construction Cost	Estimated Engineering and Contingency	Total Project Cost
	Billings Logan International Airport			
DESCRIPTION	Est'd Qty	Unit	Unit Price	

IMMEDIATE IMPROVEMENTS (2012)

1a-1	Improve Ponds A, B, C with 2' Weir Extend + 3' Blocks				
Option 1	Mobilization	1 LS	\$49,065	\$49,065	\$9,813 \$58,878
2012	Precast Concrete Blocks	412 EACH	\$600	\$247,400	\$49,480 \$296,880
	Unclassified Excavation and Embankment	1,536 CY	\$20	\$30,722	\$6,144 \$36,867
	PCC-Weir Extension	35 CY	\$300	\$10,399	\$2,080 \$12,479
	Trashrack	1 EA	\$10,000	\$10,000	\$2,000 \$12,000
	Regrade Pond Bottoms	3 LS	\$3,000	\$9,000	\$1,800 \$10,800
	Video 24 inch outfall pipe	1 LS	\$4,000	\$4,000	\$800 \$4,800
	Omitted	0 CY	\$40	\$0	\$0 \$0
	Misc. Items	1 LS	\$15,576	\$15,576	\$3,115 \$18,691
	TOTAL			\$376,162	\$75,232 \$451,395

1a-2	Improve Ponds A, B, C with 2' Weir Extend + 2' freeboard				
Option 2	Mobilization	1 LS	\$11,212	\$11,212	\$2,242 \$13,454
2012	Precast Concrete Blocks	0 EACH	\$600	\$0	\$0 \$0
	Omitted	0 CY	\$20	\$0	\$0 \$0
	PCC-Weir Extension	35 CY	\$300	\$10,399	\$2,080 \$12,479
	Trashrack	1 EA	\$10,000	\$10,000	\$2,000 \$12,000
	Regrade Pond Bottoms	3 LS	\$3,000	\$9,000	\$1,800 \$10,800
	Video 24 inch outfall pipe	1 LS	\$4,000	\$4,000	\$800 \$4,800
	Fill for Dikes Walls	630 CY	\$60	\$37,789	\$7,558 \$45,347
	Misc. Items	1 SY	\$3,559	\$3,559	\$712 \$4,271
	TOTAL			\$85,959	\$17,192 \$103,151

1b-1	Pond C Auxiliary Outfall - Parallel Existing Pipe				
Option 1	36 Inch RCP	3,042 LF	\$200	\$608,350	\$121,670 \$730,020
2012	Misc. Items	1 LS	\$121,670	\$121,670	\$24,334 \$146,004
	TOTAL			\$730,020	\$146,004 \$876,024

1b-2	Pond C Auxiliary Outfall - Moon Valley Route - Preferred Option				
Option 2	Mobilization	1 LS	\$163,875	\$163,875	\$32,775 \$196,650
2012	Moon Valley Street Improvements	1 LS	\$500,000	\$500,000	\$100,000 \$600,000
	Residential Lot Purchase	1 LS	\$400,000	\$400,000	\$80,000 \$480,000
	Plunge Pool	1 LS	\$50,000	\$50,000	\$10,000 \$60,000
	Misc. Items	1 LS	\$142,500	\$142,500	\$28,500 \$171,000
	TOTAL			\$1,256,375	\$251,275 \$1,507,650

2	Adopt a Stormwater Maintenance Plan				
2012	Prepare Plan	0 LS	\$0	\$0	\$3,000 \$3,000
	TOTAL			\$0	\$3,000 \$3,000

3	Define Drainage Routes				
2012	Coordination	0 LF	\$0	\$0	\$3,000 \$3,000
	TOTAL			\$0	\$3,000 \$3,000

4	Pond E Improvements - Phase 1				
2012	Mobilization	1 LS	\$604	\$604	\$121 \$725
	PCC-Weir Extension	12 CY	\$300	\$3,501	\$700 \$4,201
	Misc. Items	1 LS	\$525	\$525	\$105 \$630
	TOTAL			\$4,630	\$926 \$5,556

5	Permitting for Pond D Outfall Route				
2012	Flood Permit		\$0	\$0	\$2,000 \$2,000
	Conditional Letter of Map Revision		\$0	\$0	\$40,000 \$40,000
	TOTAL			\$0	\$42,000 \$42,000

ESTIMATED PROJECT COST

Project: 2012 Storm Drain Master Plan Billings Logan International Airport DESCRIPTION			Est'd Qty	Unit	Unit Price	Estimated Construction Cost	Estimated Engineering and Contingency	Total Project Cost
CIP IMPROVEMENTS (2012-2017)								
1	Bore Runway Pipe Crossing		Cal.Days	30				
2013	Mobilization	1	LS	\$159,517	\$159,517	\$31,903	\$191,420	
	Security Guard With Vehicle	202	HR	\$41	\$8,298	\$1,660	\$9,958	
	36 Inch RCP	713	LF	\$206	\$146,878	\$29,376	\$176,254	
	Pipe Boring	713	LF	\$1,030	\$734,390	\$146,878	\$881,268	
	48-inch RCP Storm Drain Manhole	2	EA	\$2,060	\$4,738	\$948	\$5,686	
	Misc. Items	1	LS	\$138,170	\$138,170	\$27,634	\$165,804	
	TOTAL				\$1,191,991	\$238,398	\$1,430,390	
2	On-Site Detention-TW A East		Cal.Days	30				
2013	Mobilization	1	LS	\$25,900	\$25,900	\$5,180	\$31,080	
	Security Guard With Vehicle	202	HR	\$41	\$8,298	\$1,660	\$9,958	
	Unclassified Excavation and Embankment	7,809	CY	\$15	\$117,130	\$23,426	\$140,556	
	Topsoiling	781	CY	\$10	\$7,809	\$1,562	\$9,370	
	Seeding/Hydrumulch	6	AC	\$2,060	\$11,965	\$2,393	\$14,358	
	Misc. Items	1	LS	\$22,434	\$22,434	\$4,487	\$26,921	
	TOTAL				\$193,535	\$38,707	\$232,242	
3	Install Standpipe at Area K Highway 3 Crossing		Cal.Days	30				
2013	Mobilization	1	LS	\$318	\$318	\$64	\$382	
	24 Inch CMP	12	LF	\$155	\$1,783	\$357	\$2,139	
	Misc. Items	1	LS	\$275	\$275	\$55	\$330	
	TOTAL				\$2,376	\$475	\$2,851	
4	Pond D Improvements		Cal.Days	90				
2014	Mobilization	1	LS	\$149,357	\$149,357	\$29,871	\$179,228	
	Security Guard With Vehicle	748	HR	\$42	\$31,395	\$6,279	\$37,674	
	Unclassified Excavation and Embankment	17,811	CY	\$16	\$284,979	\$56,996	\$341,975	
	Topsoiling	1,484	CY	\$11	\$16,327	\$3,265	\$19,592	
	Dike Erosion Matting Slopes	12,075	SY	\$6	\$72,450	\$14,490	\$86,940	
	Seeding/Hydrumulch	6	AC	\$2,122	\$11,713	\$2,343	\$14,056	
	Slope Erosion Control Mat	8,694	SY	\$5	\$43,470	\$8,694	\$52,164	
	36 Inch Drainage Culvert	2,300	LF	\$133	\$305,900	\$61,180	\$367,080	
	Swale	8,694	SY	\$5	\$43,470	\$8,694	\$52,164	
	Misc. Items	1	LS	\$128,852	\$128,852	\$25,770	\$154,622	
	TOTAL				\$1,087,914	\$217,583	\$1,305,496	
4a	Pond D Outfall - Sun Valley Route		Cal.Days	90				
2014	Mobilization	1	LS	\$141,029	\$141,029	\$28,206	\$169,235	
	36 Inch RCP	3,606	LF	\$212	\$764,557	\$152,911	\$917,468	
	Misc. Items	1	LS	\$121,668	\$121,668	\$24,334	\$146,002	
	TOTAL				\$1,027,254	\$205,451	\$1,232,705	
4b	Pond D Auxiliary Outfall - Sun Valley Route		Cal.Days	90				
2014	Mobilization	1	LS	\$135,028	\$135,028	\$27,006	\$162,034	
	Sun Valley Street Improvements	1	LS	\$636,540	\$732,021	\$146,404	\$878,425	
	Misc. Items	1	LS	\$116,490	\$116,490	\$23,298	\$139,788	
	TOTAL				\$983,539	\$196,708	\$1,180,247	
5	Redirect Stormwater into Pond D		Cal.Days	90				
2015	Mobilization	1	LS	\$105,115	\$105,115	\$21,023	\$126,138	
	36 Inch RCP	2,300	LF	\$219	\$503,700	\$100,740	\$604,440	
	Misc. Items Split Manhole etc.	1	LS	\$137,602	\$137,602	\$27,520	\$165,122	
	TOTAL				\$746,417	\$149,283	\$895,700	
6	Glycol Treatment Improvements		Cal.Days	90				
2015	Mobilization	1	LS	\$23,973	\$23,973	\$4,795	\$28,768	
	Glycol Separator at Manhole	1	LF	\$109,273	\$125,664	\$25,133	\$150,797	
	Misc. Items	1	LS	\$20,597	\$20,597	\$4,119.40	\$24,716	
	TOTAL				\$170,234	\$34,047	\$204,281	

APPENDIX K

Scope of Work

**2012 STORM DRAINAGE MASTER PLAN
FINAL SCOPE OF WORK
BILLINGS LOGAN INTERNATIONAL AIRPORT**

Phase 1 – Data Collection

1. Collect current comprehensive data of the airport storm drain system.

Include updates to the airport storm system since the 1996 Storm Drainage System Master Plan. Also include most recent updates, including the Rental Car Quick Turn Around Facility, Taxiway "A" South, and the MDT Airport Road construction. Previous data collected for SWMM models did not include any elevation data. For the 2012 Storm Drainage Master Plan, the airport storm drain system will be imported into HydroCAD Stormwater Modeling software, which requires obtaining elevations of all pipes, channels, and ponds on the airport. Elevation data not found in as-built plans will be obtained through pick-up survey. Other data needed includes pipe length, size, and material, land surface description based on soil group and land use, channel dimensions, flow lengths and slopes, and pond/weir dimensions. Each subcatchment area will be analyzed to determine portions of sheet flow and shallow concentrated flow. The following major tasks of data collection of the airport storm drain system are outlined below.

- a. Collect current data on all Storm Drain pipe on the airport property.
 - i. Collect rim shots on all manholes. Measure down information will be gathered from as-built plans. Elevation data not found in as-built plans will be obtained through pick-up survey.
- b. Collect current data on all Subcatchments on the airport property.
 - i. Existing contours will be used to gather subcatchment slopes and elevations.
- c. Collect current data on all Channels on airport property.
 - i. Existing contours will be used to gather subcatchment slopes and elevations.
- d. Collect current data on all Ponds on airport property.
 - i. Elevation data not found in as-built plans will be obtained through pick-up survey.

2. Perform Geotechnical Investigation – Not included in this scope, to be added to design scope.

- a. At new proposed pond locations
- b. At tanker base area between Rimtop Drive and Pond A

3. Review current design criteria

- a. City of Billings Stormwater Management Manual (SWMM) (Feb 2011)
- b. Montana DEQ Circular 8 – Montana Standards for Subdivision Storm Drainage (2002)
- c. FAA AC 150/5320-5C – Surface Drainage Design (2006, Rev. 2008)
- d. FEMA - Determine if Conditional Letter of Map Revision is needed through FEMA for Alkali Creek floodplain if an outlet to the creek is added. Preparing the Conditional Letter of Map Revision is not included in this scope of work.

4. Review Billings Logan International Airport Master Plan

Review the Master Plan to incorporate planned future changes into analysis.

Phase 2 – Analysis

1. Input data into modeling software

Input airport storm drain data into “HydroCAD Stormwater Modeling” Software.

2. Run model for Ponds A, B, and C

Provide the estimated quantity of storm runoff based on the following criteria. Evaluate how existing pond system A, B, and C would perform during each of the following storms. Identify deficiencies.

a. 2-year, 24-hour storm

i. MT Circular DEQ 8 (2002)

“In order to detain the peak flow from a rainfall event, it is only necessary to slow down the runoff from high-intensity, short-duration events. For detention ponds, the design event should have a duration at least equal to twice the time of concentration, but never shorten than one hour” . . . “Detention ponds shall be sized for a 2-year event, but must also be analyzed for a 100-year event, to ensure that no home sites or drainfields are inundated during this event. If this analysis shows that the capacity of the pond will not hold the entire event, the analysis must include a description of where the excess water will go, and what the potential downstream damages may be. In this case, the analysis must also compare the pre-development situation with the proposed development situation.”

b. 5-year, 24-hour storm

i. FAA AC 150/5320-5C – 2-2.4.2

“For airports, it is recommended that the 5-yr storm event be used with no encroachment of runoff on taxiway and runway pavements (including paved shoulders).”

ii. According to the Billings Logan International Airport 1996 Storm Drainage System Master Plan, a 5-year frequency design storm was chosen as the critical storm in analyzing the storm conveyance piping systems in accordance with FAA 150/5320-5B.

c. 10-year, 24-hour storm

i. FAA AC 150/5320-5C – 2-2.5

“The center 50 percent of runways; the center 50 percent of taxiways serving these runways; and helipad surfaces along the centerline should be free from ponding resulting from storms of a 10-yr frequency and intensity determined by the geographic location.”

d. 25-year, 24-hour storm

i. According to the Billings Logan International Airport 1996 Storm Drainage System Master Plan, Ponds A, B, and C are capable of detaining the 25 year occurrence storm. Pond E was designed to detain a 25 year storm.

e. 50-year, 24-hour storm

i. SWMM – City of Billings

“[Comprehensive Drainage Plan] CDP Sites will be required to size their on-site storm drain facilities based upon the 50-year, 24-hour storm and the assumption of no discharge to the City’s storm drain system.”

f. 100-year, 24-hour storm

i. MT Circular DEQ 8 (2002)

- ... “Detention ponds shall be sized for a 2-year event, but must also be analyzed for a 100-year event, to ensure that no home sites or drainfields are inundated during this event.
- ii. SWMM – City of Billings

“All subdivisions must evaluate the 100-year, 24-hour storm and ensure stormwater does not runoff subdivision at a rate greater than the natural conditions prior to subdividing land.”
 - g. Storm simulating approximate June 2010 storm
 - h. Storm simulating approximate May 2011 storm

3. Determine pre-development runoff for the 100-year, 24-hour storm event

Analyze the airport’s surface runoff drainage areas that contributed to the storm runoff intercepted by Alkali Creek Road prior to airport development for the following areas:

- a. Area 1 - Saddle Club East Drainage Area
- b. Area 2 - Saddle Club West Drainage Area
- c. Area 3 - Tumbleweed Drainage Area
- d. Area 4 - Moon Valley Drainage Area
- e. Area 5 - Sun Valley Drainage Area
- f. Area 6 - Prickly Pear Drainage Area
- g. Area 7 – Taxiway “G” Area
- h. Area 8 – Area at Runway 10L end
- i. Area 9 – Area west of Runway 10L end
- j. Area 10 – Old ranch area
- k. Area 11 – Windmill Area

4. Determine current runoff for the 5-year, 24-hour storm and the 100-year, 24-hour storm event

Analyze the airport’s surface runoff drainage areas that currently contribute to the storm runoff intercepted by Alkali Creek Road. Compare results with pre-development runoff. Summarize current storm water deficiencies in Alkali Creek Area subdivisions that are currently developed.

- a. Area 1 - Saddle Club East Drainage Area
- b. Area 2 - Saddle Club West Drainage Area
- c. Area 3 - Tumbleweed Drainage Area
- d. Area 4 - Moon Valley Drainage Area
- e. Area 5 - Sun Valley Drainage Area
- f. Area 6 - Prickly Pear Drainage Area
- g. Area 7 – Taxiway “G” Area
- h. Area 8 – Area at Runway 10L end
- i. Area 9 – Area west of Runway 10L end
- j. Area 10 – Old ranch area
- k. Area 11 – Windmill Area
- l. Area 12 – Pond E Drainage Area
- m. Area 13 – Airport Complex Area draining to Ponds A, B, C
- n. Area 14 – MDT Maintenance Area

5. Glycol treatment Options

- a. Evaluate current glycol treatment.
- b. Evaluate areas for surface farming
- c. Evaluate need for separator

6. Model new Outfall Routes

- a. Pond C auxiliary outfall
- b. Pond D (2 options for outfall routes)
- c. Prickly Pear outfall
- d. Area 7 – Taxiway “G” Area outfall
- e. Pond E Outfall /Area 9 – Area west of Runway 10L end
- f. Area 10 – Old ranch area
- g. Create map of current development around proposed outfall routes
- h. Identify current easement for existing 24 inch outfall to Alkali Creek.

7. Model various modifications to Ponds A, B, and C based on deficiencies identified in Phase 2 – Analysis. Possible modifications include:

- a. Model permanent weir extensions to Ponds A, B, and C
- b. Model increased orifice sizes at Ponds A, B, and C

8. Model modifications in sizes to all Ponds

Phase 3 – Results

1. Storm Drain Recommendations by Drainage Area

Provide options and recommendations for onsite and offsite improvements to reduce the impact of a future major storm event. Include recommendations for improving airport storm drainage to comply with current standards.

a. Onsite recommendations

- i. Area 1 - Saddle Club East Drainage Area
- ii. Area 2 - Saddle Club West Drainage Area
- iii. Area 3 - Tumbleweed Drainage Area
- iv. Area 4 - Moon Valley Drainage Area
- v. Area 5 - Sun Valley Drainage Area
- vi. Area 6 - Prickly Pear Drainage Area
- vii. Area 7 – Taxiway “G” Area
- viii. Area 8 – Area at Runway 10L end
- ix. Area 9 – Area west of Runway 10L end
- x. Area 10 – Old ranch area
- xi. Area 11 – Windmill Area
- xii. Area 12 – Pond E Drainage Area
- xiii. Area 13 – Airport Complex Area draining to Ponds A, B, C
- xiv. Area 14 – MDT Maintenance Area

b. Offsite guidance

- i. Provide general guidance for subdivision improvements.
- ii. Provide general guidance for public property (Yellowstone County and City of Billings) for increasing culvert sizes or ditch sizes.

2. Discharge South Under Highway 3

Provide recommendations for mitigation of the current storm water flow to the south side of Hwy 3. Currently there are two culverts that direct stormwater south under Highway 3.

3. Identify a plan for overflow from detention ponds.

- a. Ponds A, B, and C
- b. Pond D
- c. Pond D plus expansion
 - i. Add outfalls in each valley to creek, limit size (12")?
 - ii. Add more cell storage
 - iii. Add reverse pumping back to East pond system
- d. Pond E
 - a. Add more storage cells to Pond E
- e. Future pond to the west

4. Provide recommendations for Pond Sizing (Ponds A, B, C, D, and E)

5. Provide options for glycol treatment improvements.

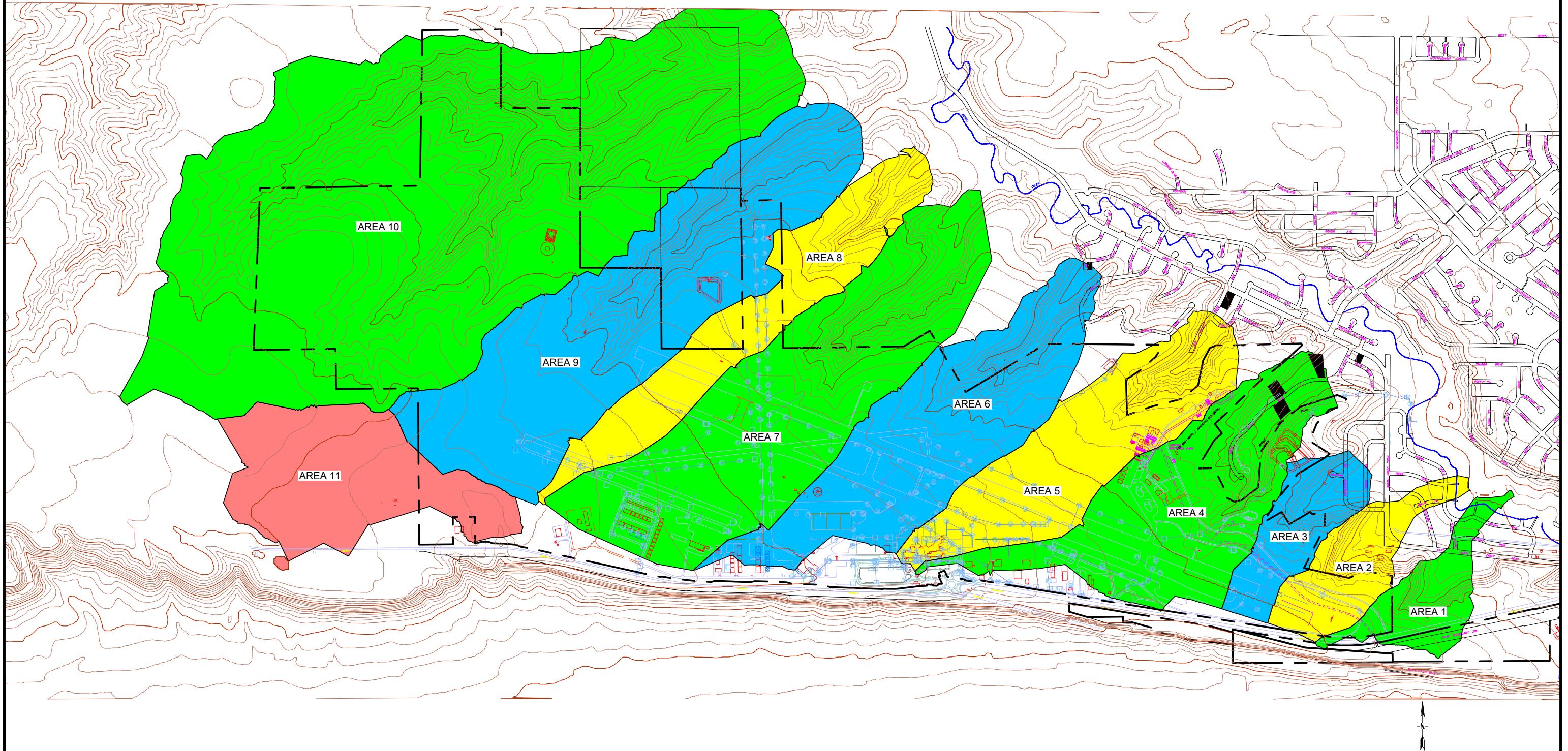
- a. Possibly in new pond near Pond D.
- b. Provide area for surface flow between TW “E” and TW “C”

6. Provide recommendations for new outfall routes

- a. Pond C
- b. Pond D
- c. Prickly Pear outfall
- d. Area 7 – Taxiway “G” Area outfall
- e. Pond E Outfall /Area 9 – Area west of Runway 10L end
- f. Area 10 – Old ranch area

7. Provide Preliminary Cost estimates for recommendations

- a. Area 1 - Saddle Club East Drainage Area
- b. Area 2 - Saddle Club West Drainage Area
- c. Area 3 - Tumbleweed Drainage Area
- d. Area 4 - Moon Valley Drainage Area
- e. Area 5 - Sun Valley Drainage Area
- f. Area 6 - Prickly Pear Drainage Area
- g. Area 7 – Taxiway “G” Area
- h. Area 8 – Area at Runway 10L end
- i. Area 9 – Area west of Runway 10L end
- j. Area 10 – Old ranch area
- k. Area 11 – Windmill Area
- l. Area 12 – Pond E Drainage Area
- m. Area 13 – Airport Complex Area draining to Ponds A, B, C
- n. Area 14 – MDT Maintenance Area
- o. Glycol improvements
- p. New outfall routes (6)


8. Prepare Report

- a. Report
- b. Document data collected
- c. Document modeling output/results
- d. Prepare Figures and Drawings
- e. Prepare Cost Estimates

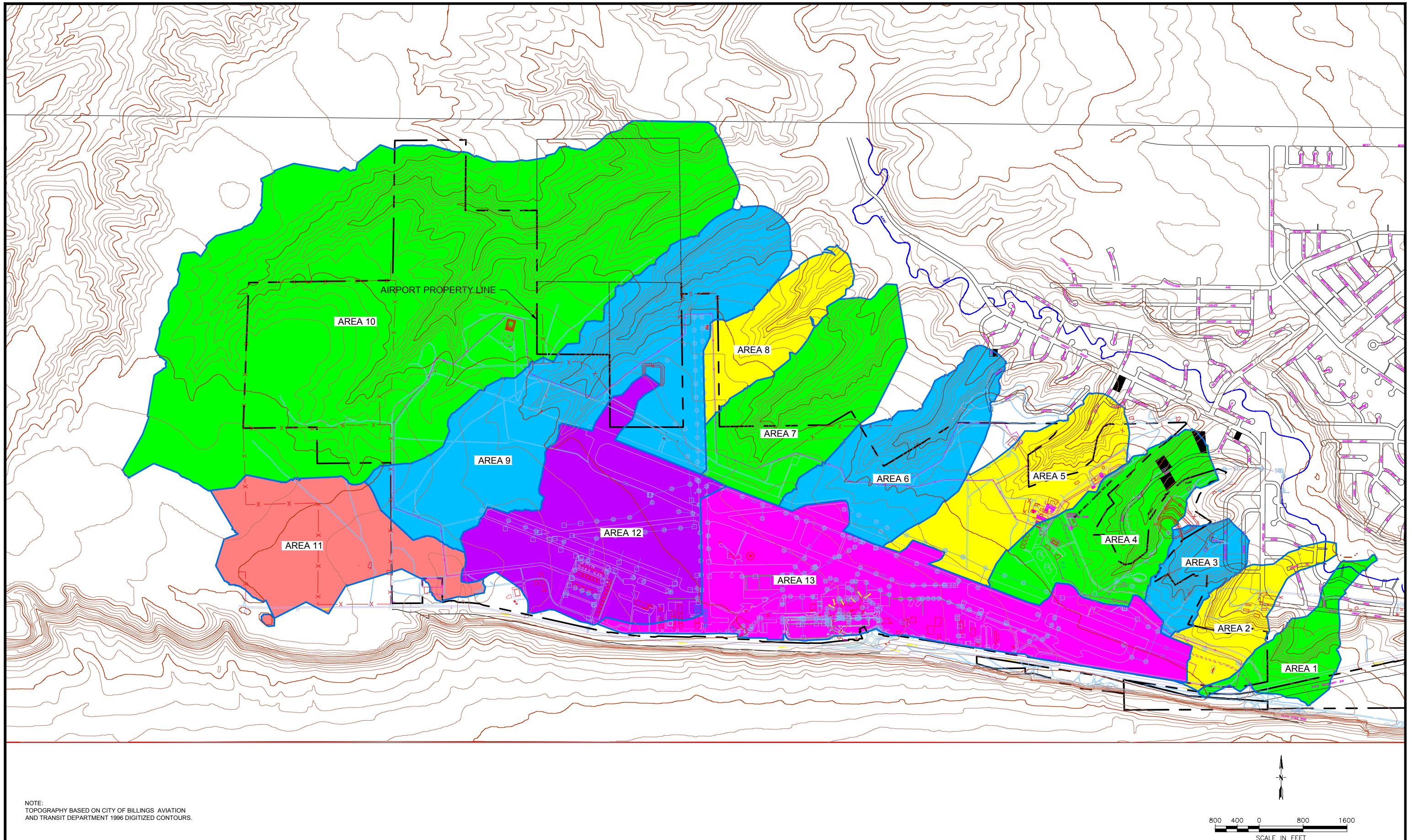
9. QA/ QC Review of Report and Analysis

10. Agency Submittal and Permitting

- a. Identify permitting needs for future construction
- b. Provide courtesy copy of 2012 SDMP to City of Billings, Yellowstone County, MDT District Office, Montana DEQ

NOTE:
TOPOGRAPHY FROM AERIAL
PHOTOGRAPHS BY MULTIPLEX METHODS
AND PLANETABLE SURVEYS 1957.

VERIFY SCALE!
THESE PRINTS MAY BE
REDUCED. LINE BELOW
MEASURES ONE INCH ON
ORIGINAL DRAWING.


315 N. 25th Street, Suite 102
Billings, MT 59101
Phone: (406) 656-6000
Fax: (406) 237-1201

DRAWN BY: _____
DSGN. BY: _____
APPR. BY: _____
DATE: _____
Q.C. REVIEW
BY: _____
DATE: _____

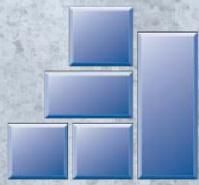
BILLINGS LOGAN INTERNATIONAL AIRPORT

0 800 1600
SCALE IN FEET

PROJECT NUMBER
SHEET NUMBER
DRAWING NUMBER
1

NOTE:
TOPOGRAPHY BASED ON CITY OF BILLINGS AVIATION
AND TRANSIT DEPARTMENT 1996 DIGITIZED CONTOURS.

SCALE IN FEET



315 N. 25th Street, Suite 102
Billings, MT 59101

DRAWN BY:	_____
DSGN. BY:	_____
APPR. BY:	_____
DATE:	_____
Q.C. REVIEW	
BY:	_____
DATE:	_____

BILLINGS LOGAN INTERNATIONAL AIRPORT

PROJECT NUMBER
SHEET NUMBER
DRAWING NUMBER
2

**MORRISON
MAIERLE, INC.**

ENGINEERS • SURVEYORS • PLANNERS • SCIENTISTS

315 North 25th Street Suite 102
Billings, Montana 59101
P: 406.656.6000 | F: 406.237.1201